
นายสัตวแพทย์เลิศชัย จินตพิทักษ์สกุล
สถาบันสุขภาพสัตว์แห่งชาติ กรมปศุสัตว์

กระทรวงเกษตรและสหกรณ์

เทคนิค Sequence-Independent 
Single-Primer Amplification (SISPA)

ร่วมกับ Nanopore sequencing 
เพื�อการตรวจวินิจฉัยโรคติดเชื�อไวรัสในสัตว์

คู่มือคู่มือ

ISBN 978-616-630-074-1



คู่มือ เทคนิค Sequence-Independent 
Single-Primer Amplification (SISPA)
ร่วมกับ Nanopore sequencing 
เพื�อการตรวจวินิจฉัยโรคติดเชื�อไวรัสในสัตว์

นายสัตวแพทย์เลิศชัย จินตพิทักษ์สกุล
สถาบันสุขภาพสัตว์แห่งชาติ
เกษตรกลาง ลาดยาว จตุจักร กรุงเทพฯ 10900
กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์

พิมพ์ครั้งที่ 1 จำนวน เล่ม
ปีที่พิมพ์ พ.ศ. 2568

ข้อมูลทางบรรณานุกรม
จัดทำโดย นายสัตวแพทย์เลิศชัย จินตพิทักษ์สกุล
เรื่อง คู่มือ เทคนิค Sequence-Independent Single-Primer Amplification (SISPA)
ร่วมกับ Nanopore sequencing เพื่อการตรวจวินิจฉัยโรคติดเชื้อไวรัสในสัตว์
สถาบันสุขภาพสัตว์แห่งชาติ กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์, 2568,    49 หน้า
ISBN (e-book) 978-616-630-074-1 
สงวนลิขสิทธิ์ ห้ามคัดลอก จัดพิมพ์ หรือทำซ้ำรวมทั้งดัดแปลงเป็นสื่ออื่น ๆ ก่อนได้รับอนุญาต

เรียบเรียงโดย



คำำ�นำำ�

	 การตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสััตว์์เป็็นกระบวนการที่่�มีีความสำคััญอย่่างยิ่่�งต่่อการเฝ้้าระวััง ป้ ้องกััน 

และควบคุุมโรค เนื่่�องจากการระบาดของเชื้้�อไวรััสในสัตว์์ไม่่เพีียงส่่งผลกระทบต่่อสุุขภาพสัตว์์และเศรษฐกิิจ 

การปศุสััตว์์เท่่านั้้�น  แต่่ยัังเกี่่�ยวข้้องกัับความมั่่�นคงทางอาหารและสาธารณสุุข ดั ังนั้้�นการพััฒนาและประยุุกต์์ใช้้

เทคโนโลยีีการตรวจวินิิจิฉัยัที่่�มีีประสิทิธิภาพ ความไว และความจำเพาะสูงู จึงเป็น็สิ่่�งสำคัญัที่่�ช่ว่ยเพิ่่�มศักัยภาพของ

ห้้องปฏิิบััติิการในการรัับมืือกัับโรคอุุบััติิใหม่่และโรคอุุบััติิซ้้ำ

	 เทคนิิค Sequence-Independent Single-Primer Amplification (SISPA) ร่ ่วมกับ Nanopore 

sequencing โดย Nanopore sequencing เป็็นเทคโนโลยีีการหาลำดัับนิิวคลีีโอไทด์์ยุุคใหม่่ (next-generation 

sequencing; NGS) ได้้เข้้ามามีีบทบาทสำคััญในการตรวจวิินิิจฉััยและเฝ้้าระวัังโรค เนื่่�องจากสามารถตรวจหา 

ลำดัับนิิวคลีีโอไทด์ได้้แบบ real-time เมื่่�อประยุุกต์์ร่่วมกับเทคนิิค SISPA ซึ่่ �งเป็็นเทคนิิคที่่�สามารถเพิ่่�มปริมาณ 

สารพัันธุุกรรมของไวรััสได้้อย่่างไม่่จำกััดสายพัันธุ์์�และไม่่จำเป็็นต้้องมีีข้้อมููลลำดัับนิิวคลีีโอไทด์์มาก่่อน  เทคนิิค 

SISPA-Nanopore sequencing นี้้�จึงึเหมาะสมอย่า่งยิ่่�งสำหรับัการค้น้หาสาเหตุกุารติิดเชื้้�อไวรัสัที่่�ไม่่ทราบชนิดิมา

ก่่อน และการเฝ้้าระวัังเชิิงรุุก ตลอดจนการวิิเคราะห์์ความหลากหลายทางพัันธุุกรรมของไวรััสซึ่่�งเป็็นประโยชน์์ต่่อ

การตรวจวินิิจิฉัยัโรค และการศึกึษาทางระบาดวิทิยา รวมทั้้�งการทำความเข้า้ใจกลไกการแพร่ก่ระจายของเชื้้�อไวรััส

ได้้อย่่างมีีประสิิทธิิภาพ

	 คู่่�มืือฉบับันี้้�จึงึจัดัทำขึ้้�นเพื่่�อหวังัให้บุ้คุลากรห้อ้งปฏิบิัตัิกิาร นักัวิจัิัย และผู้้�สนใจ เข้า้ใจพื้้�นฐานและหลักัการ

ที่่�เกี่่�ยวข้้องกัับเทคนิิค SISPA-Nanopore sequencing ตลอดจนสามารถนำความรู้้�ไปใประยุุกต์์ใช้้ได้้อย่่างมีี

ประสิิทธิิภาพ เพื่่�อพััฒนาวิิธีีการตรวจวิินิิจฉััยโรคไวรััสในสััตว์์ให้้มีีความทัันสมััยและยั่่�งยืืนต่่อไป

						      เลิิศชััย จิินตพิิทัักษ์์สกุุล

	 	 	 	     	 	 ตุุลาคม 2568



	 การจััดทำคู่่�มืือ เทคนิิค Sequence-Independent Single-Primer Amplification (SISPA) ร่ ่วมกัับ 

Nanopore sequencing เพื่่�อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสััตว์์ ฉบั บนี้้� เป็็นผลจากความร่วมมืือของ

บุคุลากรหลายฝ่า่ยภายในสถาบันัสุขภาพสัตัว์์แห่ง่ชาติิ และศูนูย์ว์ิจัิัยและพัฒันาการสัตัวแพทย์ ผู้้�จัดัทำขอขอบคุุณ

เจ้้าหน้้าที่่�ทุุกท่่านที่่�ให้้การสนัับสนุุนด้้านข้้อมููลทางวิิชาการ รวบรวมเอกสารอ้้างอิิง ตรวจสอบความถููกต้้องของ

เนื้้�อหา และให้้ข้้อคิิดเห็็นอัันเป็็นประโยชน์ต่่อการพััฒนาคู่่�มืือเล่่มนี้้� ซึ่่ �งมีีส่่วนสำคััญทำให้้เอกสารมีีความครบถ้้วน 

ชััดเจน และเหมาะสมต่่อการนำไปใช้้เป็็นแนวทางในการปฏิิบััติิงาน

	 ขอขอบคุุณ คุุณศรุุดา หวัังอนุุรัักษ์์กุุล สำหรัับการประสานงาน จััดเตรีียมข้้อมููล และสนัับสนุุนกระบวนการ

เรีียบเรีียงเนื้้�อหาเพื่่�อจััดทำคู่่�มืือฉบัับนี้้� และขอขอบคุุุ�ณ คุุณกุุลฐ์์ญรััตน์์ ภาคะ และ คุุุ�ณชนกพร บุุุ�ญศาสตร์์์� ในการ

ตรวจสอบต้้้�นฉบััั�บ การจััดรููปแบบ และการจััั�ดทำเล่่่�ม ให้้้�คู่่่��มืืื�อเล่่่�มนี้้�ออกมาสมบููู�รณ์์์� สวยงาม และพร้้้�อมใช้้้�งานได้้้�

อย่่่�างมีีี�ประสิิิ�ทธิิิ�ภาพ

กิิตติิกรรมประกาศ
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คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

เชื้้�อไวรััสก่่อโรคในสััตว์์

บทที่่� 1

	 โรคติิดเชื้้�อไวรััสในสััตว์์เป็็นหนึ่่�งในสาเหตุุสำคััญที่่�ส่่งผลกระทบ 

ต่่อสุุขภาพของสััตว์์และระบบการผลิิตปศุุสััตว์์ทั่่�วโลก ไวรััสเป็็นเชื้้�อก่่อโรคที่่�มีี

ความสามารถในการปรับัตัวัสูงู สามารถแพร่ก่ระจายได้อ้ย่า่งรวดเร็ว็ การแพร่่

ระบาดของโรคไวรััสในสััตว์์ไม่่เพีียงส่่งผลต่่อการตายและการลดประสิิทธิิภาพ

การเจริิญเติิบโตของสััตว์์เท่่านั้้�น แต่่ยัังส่่งผลกระทบต่่อคุุณภาพและปริิมาณ

ของผลิติภัณัฑ์จ์ากสััตว์ ์เช่น่ เนื้้�อ น้้ำนม และไข่ ่ซึ่่�งเป็น็องค์์ประกอบสำคัญัของ

ความมั่่�นคงด้้านอาหารและความปลอดภััยของมนุษย์์ ความซับซ้้อนของโรค

ไวรัสัในสัตัว์ท์วีีความรุนแรงมากขึ้้�นจากปัจัจัยัด้้านสิ่่�งแวดล้อ้ม การเคลื่่�อนย้า้ย

สััตว์์ระหว่่างประเทศ  การเปลี่่�ยนแปลงภููมิิอากาศ  และการขยายตััวของการ

ผลิิตเชิิงอุุตสาหกรรม ปั จจััยเหล่่านี้้�ล้้วนเป็็นตััวเร่่งให้้เกิิดโรคอุุบััติิใหม่่และ 

โรคอุุบััติิซ้้ำ (emerging and re-emerging viral diseases) ซึ่่�งเป็็นความ

ท้้าทายสำคััญต่่อระบบการเฝ้้าระวััง การป้้องกััน และการควบคุุมโรคใน

ปััจจุุบััน (Prasad et al, 2024; Bayry, 2013)

ความสำคััญของโรคไวรััสในสััตว์์

	 โรคไวรััสในสััตว์์มีีความสำคััญทั้้�งในด้้านสุุขภาพสััตว์์ เศรษฐกิิจการ

ปศุุสััตว์์ และสาธารณสุุข เช่่น โรคปากและเท้้าเปื่่�อย (Foot and mouth 

disease; FMD), โรคไข้้หวััดนก (Avian influenza; AI) และ โรคอหิิวาต์์

แอฟริิกาในสุุกร (African swine fever; ASF) ซึ่่�งสามารถก่่อให้้เกิิดการสููญ

เสีียครั้้�งใหญ่่จากการตายของสััตว์ การลดประสิิทธิิภาพการผลิิต  การจำกััด

การเคลื่่�อนย้้ายสััตว์์ และข้้อจำกััดทางการค้้า ความถี่่�ของการเกิิดโรคระบาด 

ยัังสะท้้อนถึึงการเปลี่่�ยนแปลงเชิิงนิิเวศ  รวมถึึงความเชื่่�อมโยงของระบบการ



2

คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

ผลิิตสััตว์์ทั่่�วโลก (Bayry, 2013; Prasad et al., 2024) นอกจากนี้้� ไวรััสบางชนิิด เช่่น Rabies virus และ Influenza A 

virus ยั ังสามารถติิดต่่อสู่่�คนได้้ ท ำให้้โรคไวรััสในสััตว์์เป็็นประเด็็นสำคััญภายใต้้แนวคิิด one health ซ่ึ่�งบููรณาการ 

สุุขภาพสััตว์์ สุุขภาพคน และสิ่่�งแวดล้้อมเข้้าด้้วยกััน (Destoumieux-Garzón et al., 2018)

ผลกระทบต่่อสุุขภาพสััตว์์ เศรษฐกิิจ และความมั่่�นคงทางอาหาร

	

	 ผลกระทบของโรคไวรััสในสััตว์์ครอบคลุุมตั้้�งแต่่ระดัับฟาร์์มไปจนถึึงระดัับเศรษฐกิิจโลก การติิดเชื้้�อไวรััสก่่อให้้เกิิด

การป่่วย การตาย การลดอััตราการเจริญิเติบิโต การสูญูเสีียความสามารถในการสืืบพันัธุ์์� และการลดคุุณภาพผลิติภัณัฑ์์สัตัว์ 

เช่่น เนื้้�อ น้้ ำนม  และไข่่ เป็็นต้้น ซึ่่�งส่่งผลให้้ต้้นทุุนการผลิิตสููงขึ้้�นและลดผลตอบแทนทางเศรษฐกิิจ การระบาด 

ครั้้�งใหญ่่ เช่น่ การระบาดของ ASF ในเอเชีียตะวัันออกและยุุโรป ส่งผลให้้ต้อ้งทำลายสุุกรหลายร้้อยล้้านตััว ทำให้้เกิิดภาวะ

ขาดแคลนเนื้้�อสุุกรและความผัันผวนของราคาสิินค้้าอาหาร (Ceruti et al., 2025) นอกจากนี้้� การแพร่่ระบาดของโรค

ไวรััสยัังนำไปสู่่�ข้้อจำกััดด้้านการค้้า การกีีดกัันทางการตลาด ตลอดจนความสููญเสีียจากการดำเนิินมาตรการการเฝ้้าระวััง 

การควบคุุมโรค และการฉีีดวััคซีีน อีีกทั้้�งยัังส่่งผลกระทบต่่อความมั่่�นคงทางอาหารของประชากร โดยเฉพาะในประเทศที่่�

พึ่่�งพาการเลี้้�ยงสััตว์์เป็็นแหล่่งโปรตีีนหลััก (Jones et al., 2008; Bayry, 2013) ผลกระทบเหล่่านี้้�แสดงให้้เห็็นถึึงความ

จำเป็็นของระบบเฝ้้าระวัังและการวิินิิจฉััยที่่�มีีประสิิทธิิภาพ เพื่่�อป้้องกัันและลดความเสีียหายจากโรคไวรััสในสััตว์์

โครงสร้้างและองค์์ประกอบของไวรััส

	 ไวรััส (virus) เป็็นเชื้้�อก่่อโรคที่่�จััดอยู่่�ในกลุ่่�ม  obligate intracellular parasite ซึ่่�งไม่่สามารถเพิ่่�มจำนวนได้้ด้้วย

ตนเองในสิ่่�งแวดล้้อม แต่่จำเป็็นต้้องอาศััยกลไกทางชีีวภาพของเซลล์์เจ้้าบ้้าน (host) ในการสัังเคราะห์์โปรตีีนและจำลอง

สารพัันธุุกรรม ด้้วยเหตุุนี้้� ไวรััสจึึงจััดอยู่่�กึ่่�งกลางระหว่่างสิ่่�งมีีชีีวิิตและสิ่่�งไม่่มีีชีีวิิต  เนื่่�องจากมีีสารพัันธุุกรรม  (DNA หรืือ 

RNA) และสามารถวิิวััฒนาการได้้ แต่่ไม่่มีีระบบเมแทบอลิิซึึมเป็็นของตนเอง การเพิ่่�มจำนวนของไวรััสจึึงต้้องพึ่่�งพาเซลล์์

ของสิ่่�งมีีชีีวิติชนิดิอื่่�น   ไม่ว่่า่จะเป็็นแบคทีีเรีีย พืืช สัตัว์ ์หรืือมนุษุย์ ์ภายในกลไกของเซลล์เ์จ้า้บ้า้นในการจำลอง (replicate) 

และประกอบเป็็นอนุุภาคไวรััสใหม่่ (virion) ทำให้้ไวรััสสามารถแพร่่กระจายได้้อย่่างรวดเร็็ว

	 อนุุภาคไวรััส (virion) ประกอบด้้วยองค์์ประกอบหลััก 3 ส่่วน ตามภาพที่่� 1 ได้้แก่่

ภาพที่่� 1 โครงสร้้างทั่่�วไปของเชื้้�อไวรััส
(Louten, 2016a)

	 1.	 แกนกลาง (core): บรรจุุสารพัันธุุกรรมของไวรััส ซึ่่�งอาจเป็็น 

กรดนิิวคลีีอิิกชนิิด DNA หรืือ RNA โดยสามารถจำแนกเป็็น 4 ประเภทหลััก 

ได้้แก่่ DNA สายเดี่่�ยว หรืือ single-stranded DNA (ssDNA), DNA  

สายคู่่�  หรืือ double-stranded DNA (dsDNA), RNA สายเดี่่�ยว หรืือ  

s i n g le - s t r anded  RNA  ( s sRNA )  และ  RNA  สายคู่่�   ห รืื อ  

double-stranded RNA (dsRNA))

	 2.	 แคปซิิด (capsid): เป็็นเปลืือกโปรตีีนที่่�หุ้้�มแกนกลางไว้้ ทำหน้้าที่่�

ปกป้้องกรดนิิวคลีีอิกและช่่วยในการเกาะติิดกัับเซลล์์เจ้้าบ้้าน ป ระกอบด้้วย

หน่่วยย่่อยโปรตีีนที่่�เรีียกว่่า capsomeres

	 3.	 เปลืือกหุ้้�ม (envelope): เป็็นเยื่่�อหุ้้�มที่่�ประกอบด้้วยไลพิิดสองชั้้�น

ร่่วมกับโปรตีีนและไกลโคโปรตีีน ท ำหน้้าท่ี่�หุ้้�มรอบแคปซิดของไวรััสพบได้้ใน

ไวรััสบางชนิิด
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	 ลัักษณะทางโครงสร้้างของไวรััส โดยเฉพาะการมีีหรืือไม่่มีีเปลืือกหุ้้�ม  มีีผลโดยตรงต่่อความทนทานของไวรััสใน 

สิ่่�งแวดล้้อม  ไวรััสท่ี่�มีีเปลืือกหุ้้�ม  (enveloped virus) มั ักไวต่่อสารละลายไขมััน เช่่น แอลกอฮอล์์และสบู่่�  เนื่่�องจาก 

เปลืือกหุ้้�มไขมัันสามารถถููกทำลายได้้ง่่าย ในทางตรงกัันข้้าม  ไวรััสเปลืือย (naked virus) ที่่�ไม่่มีีเปลืือกหุ้้�มจะมีีความ

ทนทานสููงกว่่า (ภาพท่ี่� 2) ท ำให้้การกำจััดไวรััสกลุ่่�มนี้้�จำเป็็นต้้องใช้้สารเคมีีที่่�มีีฤทธิ์์�ทำลายโปรตีีนมากกว่่าเพื่่�อลดความ

คงทนของแคปซิดิ ความแตกต่า่งด้า้นโครงสร้า้งเป็น็ปัจัจัยัสำคัญัที่่�ต้้องพิจิารณาในการกำหนดนโยบายและแนวทางปฏิบิัตัิิ

ในการป้้องกัันและควบคุุมการแพร่่ระบาดของโรคไวรััสในสััตว์์ (Louten, 2016a)

ภาพที่่� 2 ความแตกต่่างระหว่่างโครงสร้้างของเชื้้�อไวรััสชนิิด naked virus และ enveloped virus (Louten, 2016a)

	 การจำแนกและการจััดกลุ่่�มของไวรััสก่่อโรคในสััตว์์

	 การจำแนกประเภทไวรััสเป็็นเครื่่�องมืือสำคััญที่่�ช่่วยให้้นัักวิิทยาศาสตร์เข้้าใจความสัมพันธ์์และกลไกการทำงาน 

ของไวรััส ระบบการจำแนกไวรััสที่่�ใช้้กัันอย่่างแพร่่หลายมีีสองระบบหลััก ได้้แก่่

	 1.	 Baltimore classification

	 	 ระบบ Baltimore classification คิ ิดค้้นโดย David Baltimore ระบบนี้้�แบ่่งไวรััสออกเป็็น 7 กลุ่่�ม  

(groups I–VII) โดยอาศััยกลไกหลัักในการสัังเคราะห์์ mRNA ซึ่่�งเป็น็ขั้้�นตอนสำคััญในการเพิ่่�มจำนวนไวรััสในเซลล์์เจ้า้บ้้าน 

ระบบนี้้�ช่่วยให้้เข้้าใจวงจรชีีวิิตและพยาธิิกำเนิิดของไวรััสแต่่ละชนิิด และสนัับสนุุนการพััฒนากลยุุทธ์์ในการรัักษาและ 

ยาต้้านไวรััสได้้อย่่างตรงจุุด โดยการจำแนกไวรััสตาม Baltimore classification มีีดัังนี้้� (Louten, 2016a):

	 	 Class I: dsDNA viruses

	 	 Class II: ssDNA viruses

	 	 Class III: dsRNA viruses

	 	 Class IV: positive-sense ssRNA viruses

	 	 Class V: negative-sense ssRNA viruses

	 	 Class VI: RNA viruses that reverse transcribe

	 	 Class VII: DNA viruses that reverse transcribe
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	 2.	 ICTV classification

	 	 เป็็นระบบอนุุกรมวิิธานสากล (International Committee on Taxonomy of Viruses: ICTV) ซ่ึ่�งเป็็น

มาตรฐานสากลในการจััดหมวดหมู่่�ไวรััสตามลัักษณะทางพัันธุุกรรม โครงสร้้างแคปซิิด ชนิิดของกรดนิิวคลีีอิิก คุุณสมบััติิ

ทางกายภาพ เจ้า้บ้า้นที่่�ติดิเชื้้�อ และโรคที่่�ก่อ่ขึ้้�น โดยมีลีำดับัชั้้�น (ranks) ตั้้�งแต่ ่realm, kingdom, phylum, class, order, 

family, genus จนถึึง species (ภาพท่ี่� 3) ซึ่่�งทำให้้สามารถเปรีียบเทีียบความสัมพันธ์์ทางวิิวััฒนาการระหว่่างไวรััส 

ชนิิดต่่าง ๆ ได้้อย่่างเป็็นระบบ (ICTV, 2024)

ภาพที่่� 3 การจััดจำแนกเชื้้�อไวรััสที่่�ก่่อโรคในสััตว์์มีีกระดููกสัันหลััง ตามการจำแนกของ ICTV (Louten, 2016a)
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ตารางที่่� 1 ตััวอย่่างเชื้้�อไวรััสก่่อโรคสำคััญในปศุุสััตว์์ (ICTV, 2024; Prasad et al., 2024)

	 	 ระบบ Baltimore และ ICTV ทำงานเสริิมซึ่่�งกัันและกััน โดยระบบ Baltimore เน้้นกลไกการทำงานของไวรััส

ในระดัับโมเลกุุล ช่ วยทำนายพฤติิกรรมของไวรััสในเซลล์์เจ้้าบ้้านได้้ ในขณะที่่�ระบบ ICTV เน้้นความสัมพันธ์์ทาง

วิิวััฒนาการและโครงสร้้าง ท ำให้้สามารถจััดหมวดหมู่่�ไวรััสอย่่างครอบคลุุมและเป็็นระบบ การใช้้ทั้้�งสองระบบควบคู่่�กััน

ช่่วยเพิ่่�มความเข้้าใจในไวรััสวิิทยาและสนัับสนุุนการพััฒนากลยุุทธ์์ป้้องกััน ควบคุุม และวิินิิจฉััยโรคไวรััสในสััตว์์ (Louten, 

2016a)  ตััวอย่่างเชื้้�อไวรััสก่่อโรคสำคััญในปศุุสััตว์์สามารถแสดงตามตารางที่่� 1  

กลุ่่�มโรค ชื่่�อโรค ไวรััส วงศ์์/สกุุล
สาร 

พัันธุุกรรม
ชนิิด 
สััตว์์ 

ลัักษณะโรคเด่่น

โรค 
ในสุุกร

โรคอหิิวาต์์แอฟริิกา 
ในสุุกร 

(African swine fever)

African swine fever virus 
(ASFV)

Asfarviridae / Asfivirus dsDNA สุุกร, 
หมููป่่า

ติิดเชื้้�อรุุนแรง, ตายสููง, 
การติิดเชื้้�อระยะยาว 

หรืือถาวร

โรคอหิิวาต์์สุุกร  
(Classical swine fever)

Classical swine fever 
virus (CSFV)

Flaviviridae / 
Pestivirus

(+)ssRNA สุุกร ไข้้, มีีภาวะเลืือดออก, 
ตายสููง

โรคพีีอาร์์อาร์์เอส  
(Porcine Reproductive and 

Respiratory Syndrome; PRRS)

Porcine reproductive 
and respiratory 

syndrome virus (PRRSV)

Arteriviridae / 
Betaarterivirus

(+)ssRNA สุุกร ทำให้้แท้้ง,  
โรคระบบทางเดิินหายใจ

โรคพีีเอ็็มดัับเบิ้้�ลยููเอส 
(Post-weaning multisystemic 
wasting syndrome; PMWS)

Porcine circovirus type 
2 (PCV2)

Circoviridae / 
Circovirus

ssDNA สุุกร น้้ำหนัักลด,  
ต่่อมน้้ำเหลืืองโต,  

ระบบภููมิิคุ้้�มกัันบกพร่่อง,  
อััตราการเจริิญเติิบโตลดลง

โรคท้้องร่่วงติิดต่่อในสุุกร  
(Porcine epidemic diarrhea)

Porcine epidemic 
diarrhea virus (PEDV)

Coronaviridae / 
Alphacoronavirus

(+)ssRNA สุุกร ท้้องเสีียรุุนแรง,  
ตายสููงในลููกสุุกร

โรคไข้้หวััดใหญ่่ในสุุกร  
(Swine influenza)

Swine influenza virus 
(SIV)

Orthomyxoviridae / 
Influenzavirus A

(-)ssRNA สุุกร ไข้้, ไอ,  
โรคในระบบทางเดิินหายใจ

โรคใน
สััตว์์ปีีก

โรคนิิวคาสเซิิล  
(Newcastle disease)

Newcastle disease 
virus (NDV)

Paramyxoviridae / 
Orthoavulavirus

(-)ssRNA ไก่่,  
นกป่่า

โรคระบบทางเดิินหายใจ,  
ระบบประสาท, ตายสููง

โรคหลอดลมอัักเสบติิดต่่อ 
(Infectious bronchitis)

Infectious bronchitis 
virus (IBV)

Coronaviridae / 
Gammacoronavirus

(+)ssRNA ไก่่ โรคระบบทางเดิินหายใจ,  
ลดการผลิิตไข่่

โรคไข้้หวััดนก  
(Avian influenza)

Avian influenza virus 
(AIV)

Orthomyxoviridae / 
Influenzavirus A

(-)ssRNA ไก่่, เป็็ด,  
นกน้้ำ

อาการทางระบบทางเดิิน
หายใจ, จุุดเลืือดออก, 

อััตราตายสููง

โรคมาเร็็กซ์ ์
(Marek’s disease)

Marek’s disease virus 
(MDV)

Herpesviridae / 
Mardivirus

dsDNA ไก่่ อััมพาต,  
เส้้นประสาทอัักเสบ, 

เนื้้�องอกในอวััยวะภายใน

โรครีีโอไวรััสในไก่่  
(Avian reovirus disease)

Avian reovirus (ARV) Reoviridae / 
Orthoreovirus

dsRNA ไก่่,  
นกป่่า

ข้้ออัักเสบ,  
เอ็็นข้้ออัักเสบ

โรคกล่่องเสีียงอัักเสบติิดต่่อ 
(Infectious laryngotracheitis)

Infectious 
laryngotracheitis virus 

(ILTV)

Herpesviridae / 
Iltovirus

dsDNA ไก่่ ไข้้, ระบบทางเดิินหายใจ, 
ตาอัักเสบ, หายใจลำบาก

โรคกาฬโรคเป็็ด (Duck plague/
Duck virus enteritis)

Duck plague virus 
(DPV / Anatid 
herpesvirus 1)

Herpesviridae / 
Mardivirus

dsDNA เป็็ด, ห่่าน ตายสููง,  
มีีภาวะเลืือดออก, 

เลืือดออกตามอวััยวะ

โรคติิดเชื้้�อเอเวีียนพารามิิกโซ 
ไวรััส-2 (Avian aramyxovirus-2)

Avian paramyxovirus-2  
(APMV-2)

Paramyxoviridae / 
Avulavirus

(-)ssRNA ไก่่, นก โรคระบบทางเดิินหายใจ

โรคกััมโบโร (Infectious bursal 
disease/Gumboro)

Infectious bursal 
disease virus (IBDV)

Birnaviridae / 
Avibirnavirus

dsRNA ไก่่ ภููมิิคุ้้�มกัันบกพร่่อง,  
ท้้องเสีีย



6

คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

กลุ่่�มโรค ชื่่�อโรค ไวรััส วงศ์์/สกุุล
สาร 

พัันธุุกรรม
ชนิิด 
สััตว์์ 

ลัักษณะโรคเด่่น

โรคโลหิิตจางในไก่่  
(Chicken Infectious Anemia)

Chicken Anemia Virus 
(CAV)

Anelloviridae / 
Gyrovirus

ssDNA ไก่่ ภาวะโลหิิตจางรุุนแรง, 
ภููมิิคุ้้�มกัันบกพร่่อง, 

ต่่อมน้้ำเหลืือง/ม้้ามฝ่่อ, 
ผิิวหนัังมีีเลืือดออก, 
อััตราการตายสููง

โรคสมองและไขสัันหลัังอัักเสบ 
ในสััตว์์ปีีก  

(Avian encephalomyelitis)

Avian 
encephalomyelitis 

virus (AEV)

Picornaviridae / 
Tremovirus

(+)ssRNA ไก่่, นก โรคระบบประสาท, 
อาการสั่่�น

โรคไข่่นิ่่�มหรืือโรคไข่่ลด 
(Egg drop syndrome)

Egg drop syndrome 
virus (EDSV)

Adenoviridae / 
Atadenovirus

dsDNA ไก่่, นก ผลผลิิตไข่่ลดลง, ไข่่ผิิดรููป, 
ภาวะการติิดเชื้้�อแบบไม่่

แสดงอาการ

โรคลิิวโคซิิสในสััตว์์ปีีก  
(Avian Leukosis)

Avian leukosis virus 
(ALV)

Retroviridae / 
Alpharetrovirus

ssRNA-RT ไก่่ ซีีด, เนื้้�องอกในตัับ ม้้าม 
หรืือถุุงฟาเบรซิิอุุส,  
การเจริิญเติิบโตช้้า, 
ผลผลิิตไข่่ลดลง

โรคในโค/
กระบืือ

โรคไอบีีอาร์์ 
(Infectious bovine 
rhinotracheitis; IBR)

Infectious bovine 
rhinotracheitis virus 

(IBRV / BHV-1)

Herpesviridae / 
Varicellovirus

dsDNA โค โรคระบบทางเดิินหายใจ, 
โรคระบบสืืบพัันธุ์์�,  

ทำให้้แท้้ง

โรคบวายไวรััลไดอะเรีีย 
(Bovine viral diarrhea; BVD)

Bovine viral diarrhea 
virus (BVDV)

Flaviviridae / 
Pestivirus

(+)ssRNA โค ท้้องเสีีย, แท้้งลููก, 
ภููมิิคุ้้�มกัันบกพร่่อง

โรคลััมปีี สกิิน  
(Lumpy skin disease)

Lumpy skin disease 
virus (LSDV)

Poxviridae / 
Capripoxvirus

dsDNA โค, กระบืือ มีีไข้้, ก้้อนนููนที่่�ผิิวหนััง, 
ต่่อมน้้ำเหลืืองโต,  
ผิิวหนัังอัักเสบ,  

ผลผลิิตน้้ำนมลดลง

โรคติิดเชื้้�อโคโรนาไวรััสในโค 
(Bovine coronavirus infection)

Bovine coronavirus 
(BCoV)

Coronaviridae / 
Betacoronavirus

(+)ssRNA โค ท้้องเสีีย,  
โรคระบบทางเดิินหายใจ, 
ภาวะสููญเสีียผลิิตภาพ

โรคใน
แกะ/
แพะ

โรคข้้ออัักเสบและสมองอัักเสบ
ในแพะ  

(Caprine arthritis-encephalitis)

Caprine arthritis-
encephalitis virus 

(CAEV)

Retroviridae / 
Lentivirus

ssRNA-RT แพะ ข้้ออัักเสบ,  
ระบบประสาท,  

ลดการเจริิญเติิบโต

โรคปากเปื่่�อยในแพะและแกะ 
(Contagious ecthyma/Orf)

Contagious ecthyma 
virus (Orf virus)

Poxviridae / 
Parapoxvirus

dsDNA แกะ, แพะ แผลและตุ่่�มน้้ำรอบปาก, 
ลิ้้�น, แผลในหััวนม

โรคพีีพีีอาร์์ (Peste des Petits 
ruminants; PPR)

Peste des Petits 
ruminants virus (PPRV)

Paramyxoviridae / 
Morbillivirus

(–)ssRNA แกะ, แพะ ไข้้, ท้้องเสีีย, การตายสููง, 
ภููมิิคุ้้�มกัันลด

โรคในม้้า โรคกาฬโรคแอฟริิกาในม้้า 
(African horse sickness)

African horse sickness 
virus (AHSV)

Reoviridae / 
Orbivirus

dsRNA ม้้า, ลา, ล่่อ, 
ม้้าลาย

มีีไข้้, ตายสููงในม้้า, 
ภาวะมีีไวรััสในเลืือด

โรคไข้้หวััดใหญ่่ในม้้า  
(Equine influenza)

Equine influenza virus Orthomyxoviridae / 
Influenzavirus A

(–)ssRNA ม้้า ไข้้, ไอ, น้้ำมููก,  
ระบบทางเดินิหายใจอักัเสบ

โรคติิดเชื้้�อโรตาไวรััสในม้้า  
(Equine rotavirus infection)

Equine rotavirus Reoviridae / 
Rotavirus

dsRNA ม้้า ท้้องเสีียรุุนแรง,  
อาจทำให้้ลููกม้้าตาย

โรคโพรงจมููกและปอดอัักเสบในม้้า 
(Equine rhinopneumonitis)

Equine 
rhinopneumonitis 

virus (EHV-1, EHV-4)

Herpesviridae / 
Varicellovirus

dsDNA ม้้า ไข้้, ระบบทางเดิินหายใจ, 
แท้้งลููก, ระบบประสาท

โรคเส้้นเลืือดแดงอัักเสบในม้้า 
(Equine viral arteritis)

Equine viral arteritis 
virus (EVAV)

Arteriviridae / 
Alphaarterivirus

(+)ssRNA ม้้า ไข้้, อััมพาต, แท้้งลููก, 
อวััยวะเพศบวม

โรคโลหิิตจางติิดต่่อในม้้า  
(Equine infectious anemia)

Equine infectious 
anemia virus (EIAV)

Retroviridae / 
Lentivirus

ssRNA-RT ม้้า ไข้้, ซีีด, บวมน้้ำ,  
โลหิิตจาง,  

ภููมิิคุ้้�มกัันบกพร่่อง
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กลุ่่�มโรค ชื่่�อโรค ไวรััส วงศ์์/สกุุล
สาร 

พัันธุุกรรม
ชนิิด 
สััตว์์ 

ลัักษณะโรคเด่่น

โรคใน
สััตว์์ 

หลายชนิด

โรคปากและเท้้าเปื่่�อย 
(Foot-and-mouth disease)

Foot-and-mouth 
disease virus (FMDV)

Picornaviridae / 
Aphthovirus

(+)ssRNA โค, กระบืือ, 
สุุกร, แกะ, 

แพะ

แผลในปาก/ฝ่่าเท้้า, 
ผลผลิิตน้้ำนมลดลง

โรคแคปริิพอกซ์์ 
(Capripox Diseases)

Capripoxviruses Poxviridae / 
Capripoxvirus

dsDNA โค, แกะ, 
แพะ

มีีตุ่่�มขึ้้�นตามผิิวหนััง, 
ตุ่่�มน้้ำ, ลดการผลิิตน้้ำนม, 

แท้้ง

โรคอาคาบาเน  
(Akabane disease)

Akabane virus Simbu serogroup, 
Peribunyaviridae

(+)ssRNA โค, แกะ, 
แพะ

พิิการในลููกสััตว์์,  
ทำให้้แท้้ง

โรคติิดเชื้้�อไวรััสเฮอร์์ปีีส์์ 
ในสััตว์์เคี้้�ยวเอื้้�อง 

(Ruminant herpesvirus 
infections)

Herpesvirus (AHV-1, 
OHV-2)

Herpesviridae dsDNA โค, แกะ, 
แพะ

ไข้้, น้้ำตาไหล, ระบบ
ทางเดิินหายใจผิิดปกติิ, 
อาการทางระบบทางเดิิน

อาหารและประสาท

โรคปากอัักเสบพุุพอง(Vesicular 
stomatitis)

Vesicular stomatitis 
virus

Rhabdoviridae / 
Vesiculovirus

(-)ssRNA โค, กระบืือ, 
สุุกร, ม้้า

มีีไข้้, ตุ่่�มพองและแผลที่่�
ปาก ลิ้้�น และเท้้า, ผลิิต
น้้ำนมลดลง, เบื่่�ออาหาร

โรคพิิษสุุนััขบ้้าเทีียม (Aujeszky’s 
disease/Pseudorabies)

Pseudorabies virus 
(PRV)

Herpesviridae / 
Alphaherpesvirus

dsDNA สุุกร, สุุนััข, 
โค

โรคระบบประสาท, ไข้้, 
หายใจลำบาก, ตายสููงใน
ลููกสุุกร, อาจทำให้้สััตว์์
อื่่�นติิดเชื้้�อและตาย

โรคติิดต่่อ
จากสััตว์์
สู่่�คน

โรคไข้้เวสต์์ไนล์์ 
(West nile fever)

West Nile virus (WNV) Flaviviridae / 
Flavivirus

(+)ssRNA นก, ม้้า, 
มนุุษย์์

ระบบประสาทผิิดปกติิ, 
อััมพาต, อาจตาย

โรคพิิษสุุนััขบ้้า (Rabies) Rabies virus (RABV) Rhabdoviridae / 
Lyssavirus

(–)ssRNA สััตว์์เลี้้�ยงลููก
ด้้วยนม เช่่น 
สุุนััข, แมว, 
โค, ม้้า, 
มนุุษย์์

โรคระบบประสาท
รุุนแรง, พฤติิกรรมผิิด

ปกติิ, อาการน้้ำลายไหล, 
ทำให้้ตาย

โรคไข้้หวััดนก (Avian Influenza) Avian influenza virus 
(AIV)

Orthomyxoviridae / 
Influenzavirus A

(-)ssRNA ไก่่, เป็็ด,  
นกน้้ำ, 
มนุุษย์์

อาการทางระบบทางเดิิน
หายใจ, จุุดเลืือดออก, 

อััตราตายสููง
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คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

วิิธีีการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสทางห้้องปฏิิบััติิการ

	 การตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสสามารถทำได้้หลายวิิธีี ทั้้ �งการเพาะแยกเชื้้�อในเซลล์์เพาะเลี้้�ยง การตรวจทาง 

ซีีรัมวิิทยา และเทคนิิคชีีวโมเลกุุลสมััยใหม่่ แต่่ละวิิธีีมีีข้้อดีี ข้ อจำกััด และความเหมาะสมในการใช้้งานที่่�แตกต่่างกััน  

ดัังสรุุปตามตารางที่่� 2 โดยมีีรายละเอีียดของวิิธีีต่่าง ๆ ดัังนี้้�

	 1. วิิธีีเพาะแยกเชื้้�อในเซลล์์เพาะเลี้้�ยง (cell culture approach)

	 วิิธีีเพาะแยกเชื้้�อในเซลล์์เพาะเลี้้�ยงเป็็นเทคนิิคดั้้�งเดิิมที่่�ใช้้ค้้นพบไวรััส โดยเริ่่�มจากการกรองตััวอย่่างทางคลิินิิก 

เพื่่�อกำจััดเซลล์์โฮสต์์และจุุลิินทรีีย์์อื่่�น ๆ ก่่อนนำไปเพาะเลี้้�ยงในเซลล์์ที่่�เหมาะสม จากนั้้�นตรวจสอบการเปลี่่�ยนแปลงทาง

สััณฐานวิิทยาของเซลล์์เพาะเลี้้�ยง เช่่น การเกิิด syncytia, การสลาย (lysis), การหลุุดลอก (detachment) หรืือการเกิิด 

inclusion bodies ซึ่่�งรวมเรีียกว่่า cytopathic effect (CPE) การสัังเกต CPE ช่่วยบ่่งชี้้�การมีีอยู่่�และการเพิ่่�มจำนวนของ

ไวรััส หลัังจากนั้้�นไวรััสจะถููกทำให้้บริิสุุทธิ์์�ด้้วยเทคนิิคการปั่่�นเหว่ี่�ยงความเร็็วสููง แม้้ว่่าวิิธีีนี้้�จะใช้้เวลานานและต้้องอาศััย

ความชำนาญสููง แต่่ยัังคงเป็็นวิิธีีสำคััญสำหรัับการเพิ่่�มปริิมาณไวรััสให้้เพีียงพอสำหรัับการทดสอบทางซีีรัมวิิทยาและ 

อณููชีีววิิทยา อย่่างไรก็็ตาม  ไม่่ใช่่ทุุกชนิิดของไวรััสสามารถเติิบโตได้้ในเซลล์์เพาะเลี้้�ยง ท ำให้้เป็็นข้้อจำกััดสำคััญต่่อการ

ตรวจพบและการศึึกษาลัักษณะของไวรััสบางชนิิด (Flint et al., 2015; Louten, 2016b)

	 2. การตรวจทางซีีรััมวิิทยา (serological approach)

	 Enzyme-linked immunosorbent assay (ELISA) เป็็นหนึ่่�งในวิิธีีการตรวจทางซีีรััมวิิทยาที่่�นิิยมใช้้สำหรัับ 

การตรวจหาแอนติิบอดีีหรืือแอนติิเจนของไวรััสในตััวอย่่างเลืือดหรืือซีีรัม ข้ อดีีของ ELISA คืื อสามารถตรวจตััวอย่่างได้้

จำนวนมากภายในเวลาอัันสั้้�น มีีความไวและความจำเพาะในระดัับที่่�ยอมรัับได้้ จึึงเหมาะสมกัับการเฝ้้าระวัังโรคในระดัับ

ประชากรสััตว์์ วิ ิธีีนี้้�ยัังสามารถปรัับรููปแบบให้้เหมาะสมกัับการตรวจแอนติิบอดีีหรืือแอนติิเจนเฉพาะ เช่่น indirect 

ELISA, competitive ELISA, หรืือ sandwich ELISA นอกจากนี้้� ยัังมีีวิิธีีทางซีีรััมวิิทยาอื่่�น ๆ เช่่น virus neutralization 

test (VNT) และ agar gel immunodiffusion (AGID) ซึ่่�งมีีความซัับซ้้อนของขั้้�นตอน ใช้้เวลานาน และต้้องอาศััยความ

เชี่่�ยวชาญในการทดสอบและการอ่่านผล (Datta et al., 2015)

	 3. วิิธีีที่่�ต้้องอาศััยข้้อมููลลำดัับกรดนิิวคลีีอิิก (nucleic acid sequence-dependent approach)

	 เทคนิิคที่่�ต้้องอาศััยข้้อมููลลำดัับกรดนิิวคลีีอิิก เช่่น PCR และ ไมโครอาร์์เรย์์ (microarrays) มีีความรวดเร็็วกว่่า

เทคนิิคดั้้�งเดิิม เช่่น วิิธีีเพาะแยกเชื้้�อในเซลล์์เพาะเลี้้�ยง และสามารถค้้นพบจีีโนไทป์์ใหม่่ของไวรััสที่่�ทราบชนิิดแล้้วได้้อย่่าง

มีีประสิิทธิิภาพ PCR เป็็นวิิธีีที่่�นิิยมสููง เนื่่�องจากสามารถเพิ่่�มปริิมาณลำดัับกรดนิิวคลีีอิิกของไวรััสจากตััวอย่่างทางคลิินิิก

เพีียงเล็็กน้้อยได้้อย่่างรวดเร็็ว แม้้ว่่าวิิธีีนี้้�เหมาะสำหรัับค้้นหาไวรััสที่่�ทราบชนิิดแล้้ว แต่่ข้้อจำกััดสำคััญคืือ ต้้องทราบลำดัับ

พัันธุุกรรมของเชื้้�อไวรััสท่ี่�สนใจแน่่ชััดก่่อนจึึงจะออกแบบไพรเมอร์์ได้้ ส่ ่วนเทคนิิค degenerate PCR ถู ูกพััฒนาขึ้้�นเพื่่�อ 

ลดข้้อจำกััดนี้้�โดยรองรัับความหลากหลายของไวรััสในระดัับหนึ่่�ง แต่่ยัังคงพึ่่�งพาข้้อมููลลำดัับของสกุุลหรืือวงศ์์ของไวรััส 

และการเพิ่่�มปริมาณจีีโนมมักัทำได้เ้พีียงส่ว่นเล็ก็ ๆ  ของไวรัสั ซึ่่�งบางครั้้�งไม่เ่พีียงพอสำหรับัการวิเิคราะห์เ์ชิงิลึึก (Mahony, 

2008; Datta et al., 2015)

	 4. วิิธีีที่่�ไม่่ต้้องอาศััยข้้อมููลลำดัับกรดนิิวคลีีอิิก (nucleic acid sequence-independent approach)

	 วิิธีีที่่�ไม่่ต้้องอาศััยข้้อมููลลำดัับกรดนิิวคลีีอิก เช่่น เมทาจีีโนมิิกส์์ (metagenomics) ช่ วยให้้สามารถศึึกษา 

สารพัันธุุกรรมทั้้�งหมดในตััวอย่่างได้้โดยไม่่ต้้องเพาะเลี้้�ยงสิ่่�งมีีชีีวิต  และไม่่จำเป็็นต้้องมีีข้อมููลเก่ี่�ยวกัับลำดัับกรดนิิวคลีีอิก

ของไวรััสที่่�ทราบแน่่ชััดการวิิเคราะห์์เมทาจีีโนมิิกส์์ในยุุคแรกใช้้การเพิ่่�มปริิมาณกรดนิิวคลีีอิกด้้วย PCR, การโคลน และ 
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ตารางที่่� 2  การเปรีียบเทีียบข้้อดีีและข้้อจำกััดของวิิธีีการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสทางห้้องปฏิิบััติิการ

     วิิธีีตรวจ ข้้อดีี ข้้อจำกััด ความเหมาะสมในการใช้้งาน

การแยกเชื้้�อในเซลล์์ 
เพาะเลี้้�ยง

- สามารถเพิ่่�มปริิมาณไวรััสได้้สููง
- ใช้้ในการศึึกษาลัักษณะทางสััณฐานวิิทยา
และการจำลองตััวเองของไวรััส

- ใช้้เวลานานและต้้องอาศััยความชำนาญสููง
- ใช้้ห้้องปฏิิบััติิการที่่�มีีความพร้้อม
- ไวรััสบางชนิิดไม่่สามารถเติิบโตในเซลล์์เพาะเลี้้�ยง

- การยืืนยัันการติิดเชื้้�อ 
- การผลิิตไวรััสสำหรัับการทดสอบ 
ทางซีีรััมวิิทยาและอณููชีีววิิทยา

การตรวจทาง 
ซีีรััมวิิทยา 

- ตรวจตััวอย่่างจำนวนมากได้้รวดเร็็ว 
(ELISA) 
- มีีความแม่่นยำสููง (VNT, AGID) 
- ใช้้ประเมิินภููมิิคุ้้�มกัันหรืือการแพร่่ 
กระจายของโรค

- VNT และ AGID ใช้้เวลานานและต้้องอาศััยความ
เชี่่�ยวชาญ 
- ELISA อาจมีีความจำเพาะต่่ำกว่่าในบางกรณีี

- เฝ้้าระวัังโรคในระดัับประชากรสััตว์ ์
- ประเมิินผลวััคซีีน 
- ยืืนยัันผลตรวจเบื้้�องต้้น

เทคนิิคที่่�ต้้องอาศััย 
ข้้อมููลลำดัับ 
กรดนิิวคลีีอิิก 

- ตรวจพบไวรััสได้้รวดเร็็วและแม่่นยำ 
- เหมาะกัับการค้้นพบจีีโนไทป์์ใหม่่ 
ของไวรััสที่่�ทราบชนิิดแล้้ว

- ต้้องมีีข้้อมููลลำดัับกรดนิิวคลีีอิิกที่่�ทราบแน่่ชััด 
- เพิ่่�มปริิมาณลำดัับกรดนิิวคลีีได้้เพีียงบางส่่วน 
ของจีีโนม 
- อาจไม่่เหมาะกัับไวรััสสายพัันธุ์์�ใหม่่ที่่�ไม่่เคยพบ

- ตรวจไวรััสที่่�ทราบชนิิดแล้้ว
- เฝ้้าระวัังเชิิงโมเลกุุล
- วิิเคราะห์์จีีโนไทป์์

เทคนิิคที่่�ไม่่ต้้อง 
อาศััยข้้อมููล 
ลำดัับกรดนิิวคลีีอิิก 

- ไม่่ต้้องมีีข้้อมููลลำดัับกรดนิิวคลีีอิิกของไวรััส
- สามารถค้้นพบไวรััสใหม่่จากตััวอย่่างคลิินิิก
และสิ่่�งแวดล้้อม
- ครอบคลุุมไวรััสหลายชนิิดในตััวอย่่างเดีียว

- ต้้องใช้้เทคนิิคขั้้�นสููงและค่่าใช้้จ่่ายสููง
- การวิิเคราะห์์ข้้อมููลซัับซ้้อน
- อาจได้้จีีโนมที่่�ไม่่สมบููรณ์์

- การค้้นพบไวรััสสายพัันธุ์์�ใหม่่
- เฝ้้าระวัังไวรััสในประชากรสััตว์์หรืือ 
สิ่่�งแวดล้้อม
- การวิิจััยไวรััสวิิทยาเชิิงลึึก

การถอดรหัสัพันัธุกุรรม ต่อ่มามีีการพัฒันาเทคนิคิเพิ่่�มปริมิาณกรดนิวิคลีีอิกแบบสุ่่�มสำหรับัไวรัลัเมทาจีีโนมิกิส์ ์เช่น่ SISPA 

(sequence-independent single-primer amplification), VIDISCA (virus discovery based on cDNA-AFLP) และ 

RCA (rolling circle amplification) ทำให้ส้ามารถค้น้พบไวรัสัชนิดิใหม่ห่ลายชนิดิจากตัวัอย่า่งทางคลินิิกิและสิ่่�งแวดล้อ้ม 

(Datta et al., 2015)
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	 เทคโนโลยีีการถอดรหััสพัันธุุกรรมยุุคใหม่่ (next-generation 

sequencing; NGS) เป็็นเครื่่�องมืือสำคััญในด้้านวิิทยาศาสตร์์การแพทย์์และ

การชัันสููตรโรคสััตว์์ เนื่่�องจากสามารถวิิเคราะห์์ลำดัับนิิวคลีีโอไทด์์ของ DNA 

หรืือ RNA ได้้อย่่างรวดเร็็วและแม่่นยำ เทคโนโลยีีนี้้�ช่่วยลดข้้อจำกััดของวิิธีี

ดั้้�งเดิิม  เช่่น การเพาะเลี้้�ยงเซลล์์ ซึ่่�งมีีขั้้�นตอนซัับซ้้อนและใช้้เวลานาน  

นอกจากนี้้� NGS ยังสามารถประยุกุต์ใ์ช้ใ้นการวิเิคราะห์แ์บบ metagenomics 

เพื่่�อระบุุเชื้้�อโรคทั้้�งหมดในตััวอย่่างเดีียว ทำให้้สามารถค้้นพบไวรััสชนิิดใหม่่ที่่�

ไม่เ่คยมีีข้อ้มูลูพันัธุกุรรมมาก่อ่น (novel virus)  เทคโนโลยีี NGS จึึงมีบีทบาท

สำคััญต่่อการควบคุุมการระบาด การวางแผนมาตรการป้้องกัันโรค โดยเฉพาะ

ในกรณีีของไวรััสอุุบััติิใหม่่ ทั้้ �งยัังช่่วยให้้นัักวิิจััยสามารถศึึกษาความ 

หลากหลายทางพัันธุุกรรมของเชื้้�อไวรััสที่่�กำลัังระบาด รวมถึึงตรวจสอบการ 

กลายพัันธุ์์�ที่่�อาจส่่งผลต่่อความรุุนแรงหรืือการแพร่่กระจายของเชื้้�อ

วิิวััฒนาการของเทคโนโลยีีการถอดรหััสพัันธุุกรรม

	 วิิวััฒนาการของการถอดรหััสพัันธุุกรรมสามารถแบ่่งออกเป็็น 

สามยุุคหลััก ดัังนี้้�

	 1.	 การถอดรหัสัพันัธุกุรรมยุคุแรก (first-generation sequencing)

	 การถอดรหััสพัันธุุกรรมยุคแรก หรืือที่่�รู้้�จักกัันในชื่่�อ Sanger 

sequencing เป็็นเทคนิิคที่่�พััฒนาโดย Frederick Sanger และคณะในปีี 

1977 โดยอาศััยหลัักการ dideoxynucleotide chain termination  

ซึ่่�งอาศััยการสัังเคราะห์์สาย DNA ใหม่่จากสายแม่่แบบ (DNA template)  

เทคโนโลยีี 
next-generation 
sequencing 

บทที่่� 2
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โดยมีีทั้้�งนิิวคลีีโอไทด์์ปกติิ (dNTP) และนิิวคลีีโอไทด์์ชนิิดพิิเศษ คืือ dideoxynucleotide (ddNTP) ซึ่่�งเมื่่�อถููกนำเข้้าสู่่�

สาย DNA จะหยุุดการสร้้างสาย DNA เนื่่�องจากขาดหมู่่�ไฮดรอกซิิลตำแหน่่ง 3’ (3’-OH) ที่่�จำเป็็นต่่อการสร้้างพัันธะ

ฟอสโฟไดเอสเทอร์์ (Heather and Chain, 2016) เทคโนโลยีีนี้้�ได้้พััฒนาต่่อยอดด้้วยการติิดสีีฟลููออเรสเซนต์ ์

ที่่�นิิวคลีีโอไทด์์แต่่ละชนิิด (A, T, G, C) ด้้วยสีีที่่�แตกต่่างกััน (fluorescent labeling) ทำให้้สามารถตรวจจัับเบสสุุดท้้าย

ของสาย DNA ที่่�หยุุดการสัังเคราะห์์ได้้อย่่างแม่่นยำและอััตโนมััติิ โดยผลลััพธ์์จะถููกอ่่านด้้วยเครื่่�อง capillary 

electrophoresis และแสดงในรููป chromatogram ซ่ึ่�งช่่วยให้้การวิิเคราะห์์ลำดัับเบสมีีความรวดเร็ว็และแม่่นยำกว่่าการ

ใช้้รัังสีีแบบดั้้�งเดิิม (Goodwin et al., 2016) ตามภาพที่่� 4

	 ข้้อดีีของ Sanger sequencing คืื อ มีีความแม่่นยำสููง สามารถอ่่านลำดัับเบสได้้ยาวประมาณ 800–1,200 bp  

ต่่อการรัันหนึ่่�งครั้้�ง เหมาะสำหรัับการตรวจสอบความถูกต้้องของผล NGS และการวิิเคราะห์์ยีีนสั้้�นหรืือการกลายพัันธุ์์�

เฉพาะตำแหน่่งได้้ (Slatko et al., 2018) อย่่างไรก็็ตาม ข้ ้อจำกััดที่่�สำคััญคืือ ปริ ิมาณงานต่่อรอบต่่ำ ใช้้เวลาและ 

ต้้นทุุนสููง และต้้องอาศััยไพรเมอร์์จำเพาะในแต่่ละตำแหน่่งของ DNA template ท ำให้้ไม่่เหมาะสำหรัับการถอดรหััส 

จีีโนมขนาดใหญ่่หรืือการวิิเคราะห์์ตััวอย่่างหลายตััวอย่่างพร้้อมกัน (Goodwin et al., 2016; Heather and Chain, 

2016)

	 แม้้ว่่าเทคโนโลยีี  NGS จะเข้้ามาแทนที่่�ในการถอดรหััสจีีโนมขนาดใหญ่่ แต่่ Sanger sequencing ที่่�ใช้้ 

ฟลูอูอเรสเซนต์ยั์ังคงมีบีทบาทสำคัญัในการยืืนยันัผล PCR และตรวจสอบความถูกูต้อ้งของผล NGS การวิเิคราะห์ต์ัวัอย่า่ง

ที่่�ซัับซ้้อนน้้อย และการตรวจสอบการกลายพัันธุ์์�เฉพาะจุุด ซ่ึ่�งถืือเป็็นพื้้�นฐานสำคััญสำหรัับงานวิิจััยด้้านชีีววิิทยาระดัับ

โมเลกุุลและงานด้้านชัันสููตรโรคในปััจจุุบััน (Heather and Chain, 2016)

ภาพที่่� 4 หลัักการของเทคนิิค Sanger sequencing (Antal et al., 2014)
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	 2.	 การถอดรหััสพัันธุุกรรมยุุคที่่�สอง (second-generation sequencing)

	 การถอดรหััสพัันธุุกรรมยุคท่ี่�สอง หรืือท่ี่�รู้้�จักกัันในชื่่�อ next-generation sequencing (NGS) เป็็นเทคโนโลยีีที่่�

พััฒนาขึ้้�นเพื่่�อเพิ่่�มประสิิทธิิภาพในการถอดรหััส DNA โดยอาศััยนวััตกรรมในหลายด้้าน เช่่น เคมีีของการถอดรหััส, 

microfluidics, และชีีวสารสนเทศ แพลตฟอร์์ม NGS ยุคุที่่�สองมีีความสามารถในการถอดรหััสแบบ massively parallel 

sequencing ซึ่่�งสามารถสร้้างลำดับันิวิคลีีโอไทด์ที่่�อ่่านได้จ้ากเครื่่�อง sequencer (read) นับล้า้นถึึงพันัล้า้น read ต่อ่การ

รัันหนึ่่�งครั้้�ง เทคโนโลยีีเหล่่านี้้�มัักถููกเรีียกว่่า short-read sequencing เนื่่�องจาก read แต่่ละอัันมีีความยาวสั้้�นกว่่า 

วิธิีียุคแรก แม้จ้ะมีีข้อจำกัดัด้า้นความยาว แต่ ่NGS ยุคที่่�สองยังัสามารถถอดรหัสัและวิเิคราะห์ข์้อ้มูลู DNA ขนาดใหญ่แ่ละ

ซัับซ้้อนได้้อย่่างรวดเร็็วและมีีประสิิทธิิภาพสููง (Slatko et al., 2018) โดยแพลตฟอร์์มที่่�ได้้รัับความนิยมอย่่างมาก 

ในยุุคนี้้� ได้้แก่่

	 	 2.1 เทคโนโลยีี Illumina 

	 	 เทคโนโลยีี  Illumina ใช้้หลัักการ sequencing by synthesis (SBS) ซึ่่�งเป็็นวิิธีีการถอดรหััส DNA โดยการ

สัังเคราะห์์สาย DNA ใหม่่จาก DNA template พร้้อมกัับตรวจจัับเบสแต่่ละตััวที่่�ถููกสัังเคราะห์์ ซึ่่�งอาศััยการเตรีียม DNA 

library โดยตััด DNA ต้้นแบบเป็็นชิ้้�นสั้้�น ๆ และต่่อเข้้ากัับ adapters เพื่่�อให้้จัับกัับพื้้�นผิิว flow cell ของเครื่่�อง จากนั้้�น 

DNA แต่่ละสายจะถูกูเพิ่่�มปริมิาณด้้วย solid-phase bridge amplification ทำให้้เกิดิกลุ่่�มสาย DNA ที่่�เหมืือนกันัจำนวนมาก 

(clonal clusters) เพื่่�อให้้สามารถตรวจจัับสััญญาณได้้ชััดเจน ในขั้้�นตอนการสัังเคราะห์์ DNA แต่่ละรอบ นิิวคลีีโอไทด์์

แต่่ละชนิด (A, T, G, C) จะถููกติิดฉลากด้้วย fluorescent reversible terminators ซึ่่�งจะหยุุดการต่่อเติิมชั่่�วคราว  

เมื่่�อกล้้องของเครื่่�องตรวจจัับสััญญาณ fluorescence ของแต่่ละเบสแล้้ว กลุ่่�ม terminator จะถููกลบออก ทำให้้สามารถ

สัังเคราะห์์เบสตััวถััดไปได้้ซ้้ำ ๆ จนกว่่าจะได้้ลำดัับเบสทั้้�งหมด ตามภาพที่่� 5 ผลลััพธ์์คืือ short reads ขนาด 100–300 

bp ต่่อรััน โดยมีีความถููกต้้องสููงกว่่า 99.5% และผลผลิิตสููง ต้้นทุุนต่่อเบสต่่ำ อย่่างไรก็็ตาม แพลตฟอร์์มนี้้�อาจเกิิด base 

calling bias ในบาง motif ของลำดัับ เช่่น GGC และอาจมีีข้้อจำกััดในการประกอบจีีโนมขนาดใหญ่่แบบ de novo 

(Goodwin et al., 2016; Mardis, 2017; Slatko et al., 2018)

ภาพที่่� 5 หลัักการของเทคโนโลยีี Illumina sequencing (Metzker , 2010)
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	 	 2.2 เทคโนโลยีี Roche 454 

	 	 เทคโนโลยีี Roche 454 ใช้้หลัักการ pyrosequencing โดยตรวจจัับการปล่่อยแสงจากปฏิิกิิริิยาทางเคมีี เมื่่�อ

เอนไซม์์ DNA polymerase เพิ่่�มนิิวคลีีโอไทด์์ลงในสาย DNA ที่่�กำลัังสัังเคราะห์์ ขั้้�นตอนเริ่่�มจากการเตรีียม library DNA 

และเพิ่่�มปริิมาณ DNA ด้้วย emulsion PCR (emPCR) เพื่่�อสร้้างอนุุภาค DNA คล้้ายโคลนบนเม็็ดไมโครบีีดส์์แต่่ละเม็็ด 

ไมโครบีีดส์์จะถููกบรรจุุลงในหลุุม  (wells) ของ plate ที่่�อุุปกรณ์์สามารถตรวจจัับแสงได้้ เมื่่�อ DNA polymerase นำ 

dNTP ตััวใดเข้้ามาและจัับกัับเบสที่่�ตรงกัันของ template จะเกิิดปฏิิกิิริิยาเคมีีที่่�ปล่่อย pyrophosphate (PPi) ซึ่่�งจะถููก

เอนไซม์์ cascade แปลงเป็็นแสงฟลููออเรสเซนต์์ ปริิมาณแสงที่่�ปล่่อยออกมาตรงกัับจำนวนเบสที่่�ถููกต่่อเติิมต่่อรอบ ทำให้้

สามารถระบุุลำดัับเบสของ DNA ได้้ ตามภาพที่่� 6 เทคนิิคนี้้�สามารถสร้้าง reads ที่่�ยาวกว่่า short-read sequencing 

ของ Illumina จึึงเหมาะสำหรัับการประกอบลำดัับแบบ de novo ของจีีโนมที่่�ไม่่มีี reference genome แต่่ข้้อจำกััดคืือ

อััตราความผิิดพลาดสููงในบริิเวณที่่�มีี homopolymer หรืือเบสซ้้ำหลายตััวต่่อเนื่่�อง (Goodwin et al., 2016; Mardis, 

2017; Slatko et al., 2018)

ภาพที่่� 6 หลัักการของเทคโนโลยีี Roche 454 sequencing (Masoudi-Nejad et al., 2013)
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ภาพที่่� 7 หลัักการของเทคโนโลยีี ion torrent (Kohn et al., 2013)

	 	 2.3 เทคโนโลยีี  ion torrent                          

	 	 เทคโนโลยีี ion torrent อาศััยหลัักการทำงานของ ion torrent เริ่่�มต้้นด้้วยการเตรีียม DNA ให้้เป็็นชิ้้�นสั้้�น ๆ 

และเพิ่่�ม  adapter ที่่�จำเป็็นสำหรัับการจัับกัับ ion sphere particles (ISPs) ซึ่่�งเป็็นอนุุภาคขนาดนาโนที่่�ใช้้เป็็นตััวพา 

DNA ไปยัังชิิปเซมิิคอนดัักเตอร์์ หลัังจากนั้้�นจะทำปฏิิกิิริิยา PCR เพื่่�อเพิ่่�มจำนวน DNA บน ISPs และโหลดลงบน 

ชิิปเซมิิคอนดัักเตอร์์ท่ี่�มีีเซลล์์ขนาดเล็็กจำนวนมาก เมื่่�อมีีการเพิ่่�มนิวคลีีโอไทด์เข้้าไปในสาย DNA ที่่�กำลัังสัังเคราะห์์อยู่่�  

จะมีีการปล่อ่ยโปรตอน (H⁺) ซึ่่�งทำให้ค้่า่ pH ในเซลล์น์ั้้�น ๆ  เปลี่่�ยนแปลง และเซมิคิอนดักัเตอร์จ์ะตรวจจับัการเปลี่่�ยนแปลง

ของ pH นี้้�และแปลงเป็็นสััญญาณดิิจิิทััลที่่�สามารถแปลเป็็นลำดัับเบสของ DNA ได้้ (Slatko et al., 2018) ตามภาพที่่� 7

	 	 เทคโนโลยีีนี้้�มีีข้อ้ดีีหลายประการ เช่น่ ความเร็ว็ในการถอดรหัสัที่่�สููง ต้น้ทุุนที่่�ต่่ำ และไม่ต้่้องใช้เ้ลเซอร์ห์รืือกล้อ้ง

ในการอ่า่นสััญญาณ ทำให้้เหมาะสำหรัับการใช้ง้านในห้้องปฏิบิัตัิกิารที่่�มีีงบประมาณจำกััดหรืือจำเป็น็ต้้องทำการถอดรหััส 

DNA อย่่างรวดเร็็ว (Vogel et al., 2012)

	 3.	 การถอดรหััสพัันธุุกรรมยุุคที่่�สาม (third-generation sequencing)

	 การถอดรหััสพัันธุุกรรมยุุคที่่�สาม (third-generation sequencing หรืือ TGS) เป็็นเทคโนโลยีีการถอดรหััส DNA 

ที่่�พััฒนาขึ้้�นเพื่่�อแก้้ไขข้้อจำกััดของเทคโนโลยีีรุ่่�นก่่อนหน้้า โดยมีีคุุณสมบััติิเด่่นที่่�สำคััญคืือ ไม่่จำเป็็นต้้องเพิ่่�มปริิมาณ DNA 

template ก่ ่อนการถอดรหััส ซึ่่�งช่่วยลดเวลาและต้้นทุุนในการเตรีียมตััวอย่่าง และ สามารถบัันทึึกสััญญาณได้้ในแบบ 

เรีียลไทม์์ในระหว่่างปฏิิกิิริิยาดำเนิินไป ท ำให้้สามารถติิดตามกระบวนการถอดรหััสได้้อย่่างต่่อเนื่่�องและรวดเร็็ว  

(Xiao and Zhou, 2020) 	
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	 เทคโนโลยีี third-generation sequencing ที่่�ได้้รัับความนิิยม ได้้แก่่

	 	 3.1 เทคโนโลยีี SMRT (single-molecule real-time)

	 	 เทคโนโลยีี SMRT อาศัยัหลักัการโดยเตรีียม DNA ให้เ้ป็น็วงกลม (SMRTbell) และยึึดติิดกับั DNA polymerase 

ก่่อนที่่�จะใส่่ลงใน zero-mode waveguides (ZMWs) ซึ่่�งเป็็นช่่องนาโนที่่�สามารถตรวจจัับแสงฟลููออเรสเซนซ์์ได้้อย่่าง

แม่่นยำ ในระหว่่างการสัังเคราะห์์ DNA เอนไซม์์ polymerase จะเพิ่่�มนิิวคลีีโอไทด์์ที่่�มีีสารฟลููออเรสเซนซ์์ที่่�แตกต่่างกััน

เข้้าไปในสาย DNA ซึ่่�งจะปล่่อยสััญญาณแสงที่่�สามารถตรวจจัับได้้ทัันทีีโดยกล้้อง CCD ที่่�ติิดตั้้�งอยู่่�ใน ZMWs (Ardui  

et al., 2018) ตามภาพที่่� 8

	 	 เทคโนโลยีีนี้้�มีีข้อดีีหลายประการท่ี่�ทำให้้โดดเด่่นในการถอดรหััสจีีโนม  เช่่น สามารถอ่่านลำดัับนิิวคลีีโอไทด์ได้้

ยาวถึึง 20–30 กิิโลเบส ซึ่่�งช่่วยให้้การประกอบจีีโนมที่่�ซัับซ้้อนและมีีลำดัับซ้้ำซ้้อนแม่่นยำมากขึ้้�น นอกจากนี้้�ยัังไม่่ต้้องใช้้

การเพิ่่�มขยายปริมิาณ DNA ด้ว้ย PCR จึึงลดความผิดิพลาดจากกระบวนการขยาย และสามารถตรวจจับัการดัดัแปลงทาง

พัันธุุกรรม เช่่น การเมทิิเลชัันของ DNA ได้้โดยตรง อีีกทั้้�งการอ่่านลำดัับนิิวคลีีโอไทด์์ที่่�มีีขนาดยาวและความสามารถใน

การตรวจจัับการดััดแปลงช่่วยเพิ่่�มความแม่่นยำในการประกอบจีีโนม (Liu et al., 2015; Ardui et al., 2018; Slatko  

et al., 2018) อย่่างไรก็็ตาม SMRT ยัังมีีข้้อจำกััดอยู่่�บ้้าง เช่่น อััตราความผิิดพลาดของเบสในการอ่่านครั้้�งเดีียวสููงกว่่าการ

ถอดรหััสแบบ short-read แม้้ว่่าจะสามารถแก้้ไขได้้ด้้วยเทคนิิค circular consensus sequencing แต่่มีีต้้นทุุนทั้้�ง 

เครื่่�องมืือและสารเคมีีค่่อนข้้างสููง ต้ ้องใช้้ DNA ต้ ้นแบบในปริิมาณมากกว่่าบางเทคโนโลยีีและอััตราของ read ต่ ่อรััน 

ต่่ำกว่่าเทคโนโลยีี  short-read ท ำให้้เหมาะกัับการวิิเคราะห์์จีีโนมขนาดกลางหรืือใหญ่่แบบละเอีียด ไม่่เหมาะกัับงาน 

high-throughput ขนาดมหาศาล (Liu et al., 2015; Ardui et al., 2018)

ภาพที่่� 8 หลัักการของเทคโนโลยีี SMRT (single-molecule real-time) (Goodwin et al., 2016)
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ภาพที่่� 9 หลัักการของเทคโนโลยีี Nanopore sequencing (Goodwin et al., 2016)

	 	 3.2 เทคโนโลยีี Nanopore sequencing

	 	 เทคโนโลยีี  Nanopore sequencing เป็็นหน่ึ่�งในแพลตฟอร์์มการถอดรหััสพัันธุุกรรมยุคที่่�สามที่่�มีีจุุดเด่่น 

แตกต่่างจากวิิธีีอื่่�น โดยอาศััยหลัักการตรวจวััดการเปลี่่�ยนแปลงของกระแสไฟฟ้้าเมื่่�อสาย DNA หรืือ RNA เดี่่�ยวเคลื่่�อน

ผ่่านรููโปรตีีนขนาดนาโน (nanopore) ที่่�ฝัังอยู่่�ในเมมเบรน เมื่่�อนิิวคลีีโอไทด์์แต่่ละชนิิดผ่่าน nanopore จะก่่อให้้เกิิดการ

เปลี่่�ยนแปลงของสัญัญาณกระแสไฟฟ้า้เฉพาะ ซึ่่�งสามารถแปลงเป็น็ลำดับันิวิคลีีโอไทด์ไ์ด้แ้บบเรีียลไทม์ ์(Deamer et al., 

2016) ต ามภาพที่่� 9 เทคโนโลยีี  Nanopore sequencing มีีข้้อดีีหลายประการ ได้้แก่่ ความสามารถในการถอดรหััส 

ลำดัับนิิวคลีีโอไทด์์ที่่�ยาวมากตั้้�งแต่่หลายหมื่่�นจนถึึงล้้านเบส ท ำให้้เหมาะสำหรัับการประกอบจีีโนมท่ี่�ซัับซ้้อนและ 

การตรวจหาการเปลี่�ยนแปลงโครงสร้้างของจีีโนม อีี กทั้้�งยัังสามารถตรวจจัับการดััดแปลงทางพัันธุุกรรม  เช่่น DNA 

methylation ได้้โดยตรงโดยไม่่ต้้องมีีขั้้�นตอนเพิ่่�มเติิม  และมีีอุุปกรณ์์ที่่�มีีขนาดเล็็กพกพาได้้ เช่่น MinION ซึ่่�งสามารถ 

ใช้้งานได้้ในภาคสนาม  รวมถึึงยัังสามารถถอดรหััส RNA ได้้โดยตรงโดยไม่่ต้้องย้้อนกลัับเป็็น cDNA (Deamer et al., 

2016; Jain et al., 2016; Wang et al., 2021) อย่่างไรก็็ตาม เทคโนโลยีีนี้้�ยัังมีีข้้อจำกััด เช่่น อััตราความผิิดพลาดของ

การถอดรหััสยัังคงสููงกว่่าการถอดรหััสแบบ short-read แม้้ว่่าจะมีีการพััฒนาอััลกอริิทึึมทางชีีวสารสนเทศเพื่่�อเพิ่่�มความ

แม่่นยำ แต่่ความสามารถในการอ่่านลำดัับนิิวคลีีโอไทด์์ชนิิดเดีียวกัันที่่�เรีียงต่่อกัันซ้้ำ ๆ ในสาย DNA หรืือ RNA โดยไม่่มีี

เบสอื่่�นคั่่�น (homopolymer) และความซับัซ้อ้นของการวิเิคราะห์ข์้อ้มูลู ตลอดจนคุณุภาพของตัวัอย่า่งที่่�เตรีียม ทำให้ก้าร

ประยุกุต์ใ์ช้ใ้นเชิงิวินิิิจฉัยัทางคลินิิกิหรืือการวิเิคราะห์เ์ชิงิปริมิาณยังัคงต้อ้งมีกีารตรวจสอบความถูกูต้อ้งเพิ่่�มเติมิ (Deamer 

et al., 2016; Rang et al., 2018; Logsdon et al., 2020)
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	 ความท้้าทายทางชีีวสารสนเทศ (bioinformatics challenges) สำหรัับเทคโนโลยีี NGS และ TGS

	 	 หนึ่่�งในความท้้าทายสำคััญของการประยุุกต์์ใช้้เทคโนโลยีี NGS และ TGS คืือปััญหา “ข้้อมููลมหาศาล” (data 

deluge) ที่่�เกิิดจากความสามารถของแพลตฟอร์์ม NGS และ TGS ในการสร้้างข้้อมููลที่่�มีีปริมาณเพิ่่�มขึ้้�นอย่่างต่่อเนื่่�องและ 

หลากหลายรููปแบบ ไม่่ว่่าจะเป็็นข้้อมููลจากการศึึกษาในมนุษย์์ สั ัตว์์ พืืช  หรืือจุุลิินทรีีย์ การผลิิตข้้อมููลขนาดใหญ่่เช่่นนี้้� 

ส่่งผลกระทบต่่อทั้้�งการจััดเก็็บ การถ่่ายโอน การวิิเคราะห์์ และการตีีความข้้อมููลทางชีีววิิทยา เพื่่�อรองรัับข้้อมููลดิิบเหล่่านี้้� 

อย่า่งไรก็็ตาม ความต้องการทรัพยากรด้้านการประมวลผลและโครงสร้้างพ้ื้�นฐาน เช่น่ ซุปเปอร์์คอมพิวเตอร์์และเครืือข่่าย

ความเร็็วสููง ยัังคงเป็็นอุุปสรรคสำคััญ โดยเฉพาะอย่่างยิ่่�งในประเทศที่่�มีีทรััพยากรจำกััด ซึ่่�งมัักเป็็นพื้้�นที่่�ที่่�มีีความเสี่่�ยงต่่อ

การอุุบััติิใหม่่ของไวรััสสููง (Stephens et al., 2015; Goodwin et al., 2016) อีีกประเด็็นท้้าทายคืือความซัับซ้้อนของ

การวิิเคราะห์์ข้้อมููล เนื่่�องจากชุุดข้้อมููลจาก NGS และ TGS ต้ ้องผ่่านขั้้�นตอนหลายกระบวนการ ได้้แก่่ การประเมิิน

คุุณภาพของข้้อมููลดิิบ การประกอบลำดัับ (sequence assembly) และการระบุุตำแหน่่งบนจีีโนม  (genome 

annotation) โดยเปรีียบเทีียบกัับฐานข้้อมููลลำดัับนิิวคลีีโอไทด์หรืือโปรตีีนที่่�มีีอยู่่�เดิิม  ในกรณีีที่่�ทำการศึึกษาสายพัันธุ์์�

ไวรััสใหม่่ซึ่่�งยัังไม่่มีีจีีโนมอ้้างอิิง จำเป็็นต้้องใช้้วิิธีีการ de novo assembly เพื่่�อสร้้างลำดัับจีีโนมขึ้้�นใหม่่โดยไม่่อาศััยฐาน

ข้้อมููลจีีโนม  (genome database) นอกจากนี้้� เครื่่�องมืือทางชีีวสารสนเทศอย่่าง BLAST (basic local alignment 

search tool) มั ักถููกนำมาใช้้ในการค้้นหาความคล้้ายคลึึงของลำดัับนิิวคลีีโอไทด์์กัับ genome database ที่่�มีีอยู่่�  

แต่่ถึึงแม้้จะมีีเครื่่�องมืือดัังกล่่าวการวิิเคราะห์์ข้้อมููลเมทาจีีโนมของไวรััสยัังคงเผชิิญข้้อจำกััด โดยเฉพาะในกรณีีของไวรััสที่่�

เพิ่่�งค้้นพบหรืือมีีความหลากหลายทางพัันธุุกรรมสููง ซึ่่�งอาจไม่่มีีตััวแทนใน genome database ทำให้้การตีีความข้้อมููล

ยัังคงเป็็นเรื่่�องที่่�ซัับซ้้อนและท้้าทายอย่่างมาก (Mokili et al., 2012; Nooij et al., 2018)

ตารางที่่� 3 การเปรีียบเทีียบเทคโนโลยีี NGS

ยุุค เทคโนโลยีี หลัักการ ความยาว read
ความถููกต้้อง 

ของเบส
ข้้อดีี ข้้อจำกััด

First-
generation 
sequencing

 Sanger 
sequencing

dideoxynucleotide 
chain termination, 

capillary 
electrophoresis

800–1,200 bp >99.99% ความแม่่นยำสููง, เหมาะกัับ 
targeted sequencing, 
ตรวจตำแหน่่งกลายพัันธุ์์�

throughput ต่่ำ,  
ต้้นทุุนสููง, ใช้้เวลา, 

ต้้องใช้้ primer เฉพาะ

Second-
generation 
sequencing

 Illumina sequencing by 
synthesis 

(fluorescent reversible 
terminators)

100–300 bp >99.5% throughput สููง,  
ต้้นทุุนต่่อเบสต่่ำ,  

แม่่นยำมาก

read สั้้�น,  
bias บาง motif,  

ประกอบจีีโนมใหม่่ยาก

 Roche 454 pyrosequencing  
(ตรวจจัับแสงจาก PPi)

~400–700 bp ~99% read ยาวกว่่า Illumina, 
เหมาะกัับ de novo 

assembly

error สููงใน 
homopolymer,  

เลิิกผลิิตแล้้ว

Ion Torrent ตรวจจัับการเปลี่่�ยนแปลง 
pH จากการปล่่อย

โปรตอน

~200–400 bp ~98–99% ความเร็็วสููง, ไม่่ใช้้เลเซอร์์/
กล้้อง, ต้้นทุุนต่่ำ

ปััญหา, accuracy  
ต่่ำกว่่า Illumina

Third-
generation

 SMRT, PacBio ตรวจวััดแสง 
ฟลููออเรสเซนซ์์

ของ fluorescent 
nucleotides 

10–30 kb  
(HiFi CCS ~15–20 

kb)

Raw ~85–90%, 
HiFi >99.9%

long read,  
ตรวจ methylation ได้้, 

ไม่่มีี PCR bias

ค่่าใช้้จ่่ายสููง, 
ต้้องใช้้ DNA ปริมิาณมาก, 
throughput ต่่ำกว่่า 

Illumina

 Nanopore, 
Oxford 

Nanopore

ตรวจวััดการเปลี่่�ยนแปลง
กระแสไฟฟ้้าเมื่่�อ DNA/
RNA ผ่่าน nanopore

หลายหมื่่�นถึึง  
>1 Mb

Raw ~90–95%, 
ปรัับแก้้ 

(consensus) 
>98–99%

read ยาวมาก, 
portable (MinION),  

ตรวจ modification และ 
RNA ได้้โดยตรง

error สููงกว่่า short-read, 
เกิิด homopolymer bias, 

วิิเคราะห์์ข้้อมููลซัับซ้้อน
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การตรวจหาลำำ�ดัับ 
นิิวคลีีโอไทด์์ของไวรััส 

ด้้วยเทคโนโลยีี 
Nanopore sequencing

บทที่่� 3

	 การตรวจหาลำดัับนิิวคลีีโอไทด์ของไวรััสเป็็นเครื่่�องมืือสำคััญในงาน

ตรวจวินิิจิฉัยัและเฝ้า้ระวังัโรค เนื่่�องจากช่ว่ยให้ส้ามารถระบุชุนิดิและสายพันัธุ์์�

ของไวรััสได้้อย่่างแม่่นยำ รวมถึึงตรวจจัับการกลายพัันธุ์์�ท่ี่�อาจมีีผลต่่อความ

รุุนแรงของโรค ป ระสิิทธิิภาพของวััคซีีนหรืือการดื้้�อยา อีี กทั้้�งยัังสามารถ

อธิิบายความหลากหลายทางพัันธุุกรรมภายในเซลล์์เจ้้าบ้้าน ซึ่่�งมีีความสำคััญ

ต่่อความเข้้าใจความหลากหลายทางพัันธุุกรรมของไวรััส โดยเฉพาะไวรััสที่่�มีี

สารพัันธุุกรรมชนิิด RNA ที่่�มัักมีีการกลายพัันธุ์์�สููง นอกจากนี้้�ลำดัับพัันธุุกรรม

ที่่�ได้้จากหลายพ้ื้�นท่ี่�และหลายช่่วงเวลายัังสามารถถููกนำมาใช้้สร้้างแผนภููมิิ

สายวิิวััฒนาการ (phylogenetic tree) เพื่่�อศึึกษาความสััมพัันธ์์เชิิงระบาด

วิิทยาและการแพร่่กระจายของเชื้้�อในระดัับประชากร ต ลอดจนมีีบทบาทใน

การค้้นพบเชื้้�อก่่อโรคใหม่่ผ่่านวิิธีี metagenomic sequencing ด้้วยเทคนิิค 

NGS และ TGS จึึ งทำให้้การหาลำดัับสารพัันธุุกรรมกลายเป็็นองค์์ประกอบ

สำคััญในการรัับมืือกัับโรคติิดเชื้้�ออุุบััติิใหม่่ (Morelli et al., 2011; 

Kafetzopoulou et al., 2019; Markov et al., 2023) เมื่่�อเปรีียบเทีียบกัับ

วิธิีี sequencing ต่า่งๆ ตามที่่�ได้ก้ล่า่วแล้ว้ในบทที่่� 2 เช่น่ Sanger sequencing 

และ Illumina sequencing เป็็นต้้น พบว่่าเทคโนโลยีี  Nanopore 

sequencing มีีข้้อได้้เปรีียบหลายประการกว่่าวิิธีีอื่่�น ๆ โดยสามารถอ่่าน 

ลำดัับนิิวคลีีโอไทด์์ที่่�ยาวต่่อเนื่่�อง (long reads) ได้้ จึึ งเป็็นประโยชน์์ต่่อการ

วิิเคราะห์์โครงสร้้างทางพัันธุุกรรมที่่�ซัับซ้้อนและการตรวจจัับการกลายพัันธุ์์�ที่่�

อยู่่�ห่่างกัันในโมเลกุุลเดีียว อีี กทั้้�งยัังมีีคุุณสมบััติิการถอดรหััสพัันธุุกรรมแบบ 

real-time ท ำให้้ผู้้�ใช้้สามารถติิดตามผลลััพธ์์ได้้ทัันทีีโดยไม่่ต้้องรอให้้การรััน

เสร็็จสมบูรณ์์ นอกจากนี้้� เครื่่�องมืือบางรุ่่�น เช่่น MinION จะมีีขนาดเล็็ก
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สามารถใช้้งานภาคสนามได้้ ซึ่่�งแตกต่่างจาก PacBio และ Illumina sequencing ที่่�มีีขนาดใหญ่่ และต้้องใช้้ห้้องปฏิิบััติิ

การที่่�มีีความพร้้อมสููง แม้้ว่่าความแม่่นยำของ Nanopore sequencing ยัังต่่ำกว่่าเทคโนโลยีี short-read sequencing 

แต่่การพััฒนาทางเคมีีและอััลกอริิทึึมในการประมวลผลสััญญาณได้้ลดข้้อจำกััดนี้้�ลงอย่่างต่่อเนื่่�อง (Deamer et al., 2016; 

Loose et al., 2016; Leggett and Clark, 2017)

	 ด้้วยคุุณลัักษณะดัังกล่่าว Nanopore sequencing จึึ งถููกยอมรัับว่่าเป็็นเครื่่�องมืือที่่�มีีศัักยภาพสููงสำหรัับการ 

เฝ้้าระวัังโรคอุุบััติิใหม่่ โดยเฉพาะในสถานการณ์์ที่่�ต้้องการผลการวิิเคราะห์์อย่่างรวดเร็็ว เทคโนโลยีีนี้้�สามารถประยุุกต์์ใช้้

ในพ้ื้�นที่่�ที่่�มีีทรัพยากรจำกััดหรืือภาคสนามเพื่่�อเฝ้้าระวัังเชื้้�อโรคในสััตว์์และมนุษย์์ อีี กทั้้�งยัังเหมาะกัับการค้้นพบไวรััสที่่� 

ไม่่เคยมีีการรายงานมาก่่อนผ่่านการวิิเคราะห์์เชิิง metagenomics ความยืืดหยุ่่�นในการประยุุกต์์ใช้้ตั้้�งแต่่การตรวจ

ตััวอย่่างจำนวนน้้อยไปจนถึึงการวิิเคราะห์์ตััวอย่่างจำนวนมากในการเฝ้้าระวัังระดัับประเทศ ท ำให้้ Nanopore 

sequencing เป็็นเทคโนโลยีีที่่�ตอบโจทย์์ทั้้�งงานวิิจััย การชัันสููตรโรค ต ลอดจนระบบสาธารณสุุขระหว่่างประเทศ ยิ่่ �งไป

กว่่านั้้�น การพััฒนาเครื่่�องมืือ bioinformatics เพื่่�อเพิ่่�มความถููกต้้องในการวิิเคราะห์์ยัังช่่วยยกระดัับศัักยภาพของ

เทคโนโลยีีนี้้�ให้้เหมาะสมกัับใช้้งานในการเฝ้้าระวัังโรคติิดเชื้้�อไวรััสที่่�มีีการเปลี่�ยนแปลงอย่่างรวดเร็็ว (Lu et al., 2016; 

Quick et al., 2016)

	

หลัักการของ Nanopore sequencing

	 เทคโนโลยีี Nanopore sequencing ซึ่่�งพััฒนาโดยบริิษััท Oxford Nanopore technologies (ONT) จััดเป็็น

เทคโนโลยีีการหาลำดัับนิิวคลีีโอไทด์์ที่่�สามารถวิิเคราะห์์สารพัันธุุกรรมทั้้�ง DNA และ RNA ได้้ในลัักษณะสายยาวต่่อเนื่่�อง 

(long-read sequencing) โดยอาศััยโปรตีีนที่่�มีีรููตรงกลางระดัับนาโน (nanopore) ฝัังอยู่่�บนแผ่่นโพลีีเมอร์์ที่่�มีีคุุณสมบััติิ

เป็็นฉนวนไฟฟ้้า เมื่่�อตั้้�งค่่าความต่่างศัักย์์คงที่่� กระแสไอออนจะเคลื่่�อนผ่่าน nanopore จากขั้้�วลบไปยัังขั้้�วบวก 

ในกระบวนการนี้้� DNA สายคู่่�  จะถููกแยกเป็็น DNA สายเดี่่�ยว ด้้วย motor protein ซึ่่�งทำหน้้าที่่�เป็็น helicase จากนั้้�น 

ssDNA จะเคลื่่�อนผ่่าน nanopore โดยนิิวคลีีโอไทด์์แต่่ละเบส (A, G, C, T) จะก่่อให้้เกิิดการเปลี่่�ยนแปลงของกระแส

ไอออนในลัักษณะเฉพาะ การเปลี่่�ยนแปลงของกระแสนี้้�สามารถตรวจวััดและประมวลผลด้้วยอััลกอริิทึึมคอมพิิวเตอร์์ 

ข้้อมููลสััญญาณถููกบัันทึึกในรููปแบบไฟล์์ Fast5 หรืือ POD5 และสามารถถอดรหััสเป็็นลำดัับนิิวคลีีโอไทด์ได้้ (Meyer  

et al., 2025) (ภาพที่่� 10)

	 หลัักการทำงานของ Nanopore sequencing อาศััยเคมีีไฟฟ้้าและฟิิสิิกส์์เชิิงโมเลกุุล โดยใช้้หลัักการ  

อิเิล็็กโตรโฟเรซิิส (electrophoresis) เพื่่�อนำสาย DNA หรืือ RNA ผ่าน nanopore ที่่�ฝังัอยู่่�ในเมมเบรนซึ่่�งมีีความต้านทาน

ไฟฟ้้า เมื่่�อสายโมเลกุุลเคลื่่�อนผ่่าน pore โมเลกุุลของนิิวคลีีโอไทด์์เบสจะขััดขวางการไหลของไอออนชั่่�วคราว ทำให้้เกิิด

การเปลี่่�ยนแปลงของกระแสไฟฟ้้าท่ี่�มีีความจำเพาะต่่อชนิิดของนิิวคลีีโอไทด์เบสแต่่ละตััว การเปลี่่�ยนแปลงของสััญญาณ

นี้้�เป็น็ข้้อมููลหลัักที่่�ใช้ใ้นการอนุุมานลำดัับนิวิคลีีโอไทด์ ความแม่่นยำขึ้้�นอยู่่�กับขนาดและคุุณสมบัติัิของ pore รวมถึึงความ

เข้้มข้้นของอิิเล็็กโทรไลต์์รอบ ๆ pore ซึ่่�งความผัันผวนทางฟิิสิิกส์์และเคมีีรอบ pore อาจทำให้้เกิิดสััญญาณรบกวนและ

ส่่งผลต่่อความถููกต้้องของ basecalling ดั ังนั้้�นการออกแบบ nanopore และสารละลายบััฟเฟอร์์ที่่�เหมาะสมมีีความ

สำคััญสููงต่่อการสร้้างข้้อมููลลำดัับนิิวคลีีโอไทด์์ที่่�เชื่่�อถืือได้้ (Wanunu, 2012; Deamer et al., 2016) 

ชนิิดของ pore ที่่�ใช้้ในเทคโนโลยีี Nanopore sequencing มีี 2 แบบ คืือ

	 1.	 pore protein

	 	 ในช่่วงแรกของการพััฒนา Nanopore sequencing ใช้้ pore โปรตีีนทางชีีวภาพ เช่่น α-hemolysin (aHL)  

ซึ่่�งฝัังในเยื่่�อหุ้้�มเซลล์์และมีีรููปร่่างคล้้ายเห็็ดกลวง มีีจุดภายในสามตำแหน่่งท่ี่�ช่่วยให้้แยกเบสได้้ ต่ อมาได้้พััฒนา 
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Mycobacterium smegmatis porin A (MspA) ซึ่่�งให้้ความแม่่นยำสููงกว่่า แต่่แกนกลางของ pore ซึ่่�งมีี 

กรดแอสพาร์์ติิกท่ี่�มีีประจุุลบสามตััวอาจรบกวนการเคลื่่�อนที่่�ของ DNA และทำให้้เกิิดสััญญาณรบกวน การปรัับเปลี่่�ยน

กรดอะมิิโนเป็็นแอสพาราจีีนท่ี่�ไม่่มีีประจุุช่่วยให้้สภาพแวดล้้อมทางไฟฟ้้าเสถีียรขึ้้�น ท ำให้้การตรวจจัับสััญญาณกระแส

ไอออนแม่่นยำขึ้้�นหลายเท่่า (Clarke et al., 2009; Deamer et al., 2016)

	 2.	 solid nanopore 

	 	 solid nanopore ผลิิตจากวััสดุุอนิินทรีีย์์ เช่่น ซิิลิิคอนไนไตรด์์ กราฟีีน หรืือโลหะผสม ใช้้หลัักการ tunneling 

current ของกลศาสตร์ควอนตััมในการตรวจจัับนิิวคลีีโอไทด์ โมเลกุุลของ DNA หรืือ RNA ที่่�เคลื่่�อนผ่่าน solid nanopore 

จะทำให้้กระแสเทอร์์เนลลิิงเปลี่่�ยนแปลงในลัักษณะเฉพาะ ซึ่่�งสามารถระบุุนิิวคลีีโอไทด์์แต่่ละตััวได้้ solid nanopore มีี

ความทนทานและเสถีียรกว่่า pore protein แต่่ต้้องอาศััยเทคนิิคการตรวจวััดที่่�ซัับซ้้อน เช่่น scanning probe 

microscope (Heerema and Dekker, 2016)

	 	 เมื่่�อเปรีียบเทีียบชนิิดของ pore ทั้้�ง pore protein และ solid nanopore พบว่่า pore protein อาจไวต่่อ

ปััจจััยด้้านสิ่่�งแวดล้้อม  เช่่น อุ ุณหภููมิิและค่่า pH ส่ ่งผลให้้เกิิดความแปรปรวนในแต่่ละ lot การผลิิต  ในขณะที่่� solid 

nanopore มีีความเสถีียรและทนทานกว่่า จึึ งเหมาะกัับการใช้้งานในสภาวะที่่�ต้้องการความคงท่ี่�สููงและงานที่่�ต้้องการ

ความทนทานต่่อการใช้้งานซ้้ำหลายครั้้�ง (Heerema and Dekker, 2016) สำหรัับกระบวนการตรวจจัับสััญญาณไฟฟ้้า

จะถููกแปลงเป็็นลำดัับนิิวคลีีโอไทด์์ (basecalling) ผ่่านอััลกอริิธึึมประมวลผลทั้้�งแบบ classical เช่่น hidden Markov 

model และแบบเทคนิิคการเรีียนรู้้�เชิิงลึึก (deep learning) โดย basecaller รุ่่�นใหม่่ เช่่น Guppy และ Bonito ทำให้้

ความแม่่นยำและความเร็็วของการถอดรหััสสููงขึ้้�นอย่่างมาก เมื่่�อเปรีียบเทีียบกัับเทคโนโลยีีอื่่�น จึึ งทำให้้ Nanopore 

sequencing มีีความโดดเด่่นด้้านความเร็็วและการอ่่าน long reads ที่่�ช่่วยลดความซับซ้้อนในการประกอบจีีโนมและ

ช่่วยในการตรวจจัับการเปลี่่�ยนแปลงของโครงสร้้างจีีโนม (structural variants) แม้้ความแม่่นยำยัังต่่ำกว่่า Illumina แต่่

การปรัับปรุุงทั้้�งเคมีีของ pore และซอฟต์์แวร์์ทำให้้ consensus sequence มีีความแม่่นยำเพีียงพอสำหรัับงานตรวจ

วิินิิจฉััยโรคและระบาดวิิทยา (Jain et al., 2016; Tyler et al., 2018; Wick et al., 2019)

ภาพที่่� 10 กระบวนการของ Nanopore sequencing (Zheng et al., 2023)
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การเตรีียมไลบรารีี (library preparation) สำหรัับ Nanopore sequencing

	 	การเตรีียมไลบรารีีเป็็นขั้้�นตอนสำคััญในกระบวนการ Nanopore sequencing เนื่่�องจากเป็็นการกำหนดความ

เหมาะสมของข้้อมููลลำดัับนิิวคลีีโอไทด์์ที่่�ได้้และความแม่่นยำในการถอดรหััสลำดัับนิิวคลีีโอไทด์์สำหรัับไวรััสประเภท 

ต่่าง ๆ ซึ่่�งสามารถเตรีียมได้้หลายรููปแบบ เช่่น DNA sequencing, cDNA sequencing และ direct RNA sequencing  

กรณีีของไวรััสที่่�มีีสารพัันธุุกรรมเป็็นชนิิด DNA การเตรีียมไลบรารีีมัักเริ่่�มจากการแยก DNA ของไวรััสและตััดให้้ได้้สาย 

DNA ขนาดเหมาะสม ต่่อมาจะทำการต่่อ adapter ที่่�ช่่วยให้้โมเลกุุลของสายลำดัับนิิวคลีีโอไทด์์สามารถเข้้าสู่่� nanopore 

ได้้ สำหรัับไวรััสที่่�มีีสารพัันธุุกรรมเป็็นชนิิด RNA การเตรีียมไลบรารีีสามารถทำได้้สองวิิธีี คืื อ วิ ิธีี  cDNA sequencing  

ซึ่่�งจำเป็็นต้้องสร้้างสาย cDNA จากสาย RNA ก่่อน sequencing และอีีกวิิธีีคืือ วิิธีี direct RNA sequencing ที่่�สามารถ

อ่่านลำดัับนิิวคลีีโอไทด์์ของ RNA สายเดี่่�ยวโดยตรงโดยไม่่ต้้องสร้้าง cDNA ซึ่่�งวิิธีี  direct RNA sequencing นี้้ �เป็็น

ประโยชน์์ในการศึึกษาการดััดแปลงหลัังการถอดรหััส (post-transcriptional modifications) และรููปแบบสััณฐานของ 

RNA (Jain et al., 2016) การเลืือกวิิธีีเตรีียมไลบรารีีที่่�เหมาะสมจึึงขึ้้�นอยู่่�กัับชนิิดของสารพัันธุุกรรมของไวรััสและ

วััตถุุประสงค์์ของการศึึกษา สำหรัับไวรััสที่่�มีีสารพัันธุุกรรมเป็็นชนิิด dsDNA นั้้ �นสามารถใช้้การเตรีียมไลบรารีี  DNA  

แบบมาตรฐานเพีียงพอ แต่่สำหรัับไวรััสที่่�มีีสารพัันธุุกรรมเป็็นชนิิด RNA การสร้้าง cDNA ก่่อน sequencing จะช่่วยเพิ่่�ม

ความเสถีียรของโมเลกุุลของสายลำดัับนิิวคลีีโอไทด์และลดความผิดพลาดจากการสลายตััวของ RNA ในขณะรััน  

ส่่วน direct RNA sequencing จะเหมาะกัับงานที่่�ต้้องการศึึกษา RNA transcriptome หรืือการตรวจจัับการดััดแปลง

ของเบสโดยตรง (Depledge et al., 2019)   ในงานวิิจััยเชิิงระบาดวิิทยาและการเฝ้้าระวัังโรค มั กใช้้ barcode และ 

multiplex sequencing เพื่่�อประหยััดเวลาและทรััพยากร โดยการติิด barcode เฉพาะบนไลบรารีีแต่่ละตััวอย่่าง ทำให้้

สามารถผสมตััวอย่่างหลายตััวอย่่างเข้้าด้้วยกัันในรัันเดีียว (multiplexing) และแยกข้้อมููลกลัับตาม barcode หลัังการ 

sequencing วิธิีีนี้้�ช่่วยเพิ่่�มความคุ้้�มค่า่และประสิทิธิภิาพในการวิเิคราะห์ห์ลายตัวัอย่า่งพร้อ้มกันั ลดค่า่ใช้จ้่า่ย และช่ว่ยให้้

สามารถติิดตามการแพร่่ระบาดของไวรััสในหลายพื้้�นที่่�หรืือหลายช่่วงเวลาได้้อย่่างรวดเร็็ว อย่่างไรก็็ตาม การเลืือกจำนวน

ตัวัอย่า่งในการทำ multiplex ควรพิจิารณาความลึึกของการหาลำดับันิวิคลีีโอไทด์ ์(sequencing depth) เพื่่�อให้ไ้ด้ข้้อ้มูลู

ลำดัับนิิวคลีีโอไทด์ที่่�เพีียงพอในการวิิเคราะห์์ลำดัับนิิวคลีีโอไทด์ของไวรััสแต่่ละตััวอย่่างอย่่างแม่่นยำ (Quick et al., 

2016)

ตารางที่่� 4  ประเภทของการเตรีียมไลบรารีีสำหรัับ Nanopore sequencing (ONT, 2025a)

ประเภท 

ไลบรารีี
วิิธีีเตรีียมไลบรารีี

ชนิิดไวรััสที่่�

เหมาะสม
ข้้อดีี ข้้อจำกััด การประยุุกต์์ใช้้งาน

ตััวอย่่าง ชุุดน้้ำยา  

จาก ONT

DNA 

sequencing

แยก DNA และตััดเป็็น

สายสั้้�นและต่่อ adapter

dsDNA virus ง่่ายและไม่่ซัับซ้้อน 

สามารถอ่่าน long 

reads

ใช้้ไม่่ได้้กัับ RNA  

virus จะต้้องสร้้าง 

เป็็น cDNA ก่่อน

การหาลำดัับ 

นิิวคลีีโอไทด์์ของ DNA virus, 

การประกอบจีีโนม

SQK-DNA001 / 

SQK-DNA002

cDNA 

sequencing

เปลี่่�ยน RNA  

เป็็น cDNA  

ก่่อนต่่อ adapter

RNA virus เพิ่่�มความเสถีียรของ

โมเลกุุลและลดการ 

สลายตััวของ RNA

ไม่่สามารถตรวจจัับ

การดััดแปลง RNA  

ได้้

การศึึกษาลำดัับนิิวคลีีโอไทด์์

ของ RNA virus,  

ศึึกษา expression

SQK-PCS109 / 

SQK-PCS111

direct RNA 

sequencing

ต่่อ RNA สายเดี่่�ยวเข้้ากัับ 

adapter โดยตรง

RNA virus ตรวจสอบ RNA 

transcriptome และ 

post-transcriptional 

modification ได้้

RNA สลายง่่าย  

ความแม่่นยำต่่ำกว่่า 

cDNA sequencing

การศึึกษา RNA virus, ศึึกษา 

transcriptome การวิิเคราะห์์

การดััดแปลง RNA

SQK-RNA002

multiplex 

sequencing 

with barcode

ติิด barcode ที่่�ตััวอย่่าง

แต่่ละตััวอย่่างแล้้ว ผสม

หลายตััวอย่่างในรัันเดีียว

DNA / RNA 

virus หลาย

ตััวอย่่าง

ประหยััดเวลาและค่่า

ใช้้จ่่าย วิิเคราะห์์หลาย

ตััวอย่่างพร้้อมกััน

ต้้องควบคุุม 

sequencing depth 

ให้้เพีียงพอ

งานระบาดวิิทยา, การเฝ้้าระวััง

ไวรััสหลายพื้้�นที่่�

EXP-NBD104 / 

EXP-NBD114
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คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

กระบวนการทำงานสำคััญของการหาลำดัับนิิวคลีีโอไทด์์ด้้วยเทคโนโลยีี Nanopore

	 การหาลำดัับสารนิิวคลีีโอไทด์์ด้้วยเทคโนโลยีี Nanopore เป็็นกระบวนการที่่�ประกอบด้้วยขั้้�นตอนหลััก 3 ขั้้�นตอน 

แต่่ละขั้้�นตอนมีีความสำคััญต่่อความแม่่นยำและคุุณภาพของข้้อมููล ได้้แก่่ 

	 1. การเตรีียมไลบรารีี (library preparation)

	 หลัังจากได้้ DNA หรืือ RNA ที่่�บริิสุุทธิ์์�จากตััวอย่่าง สิ่่ �งสำคััญต่่อไปคืือการ เตรีียมไลบรารีี  โดยการเชื่่�อมต่อ 

sequence adapters เฉพาะเจาะจงเข้้ากัับปลายของโมเลกุุล DNA หรืือ RNA  โดย adapters เหล่่านี้้�จะช่่วยให้้โมเลกุุล

ของสายนิิวคลีีโอไทด์สามารถจัับกับั motor protein ซ่ึ่�งเป็น็โปรตีีนเอนไซม์ท์ี่่�ขัับเคลื่่�อนโมเลกุุลของสายนิิวคลีีโอไทด์ผ่า่น 

nanopore ได้้อย่่างสม่่ำเสมอและควบคุุมความเร็็ว นอกจากนี้้� การเตรีียมไลบรารีียังรวมถึึงการติิด barcode  

หากต้้องการทำ multiplex sequencing ซึ่่�งช่่วยให้้สามารถอ่่านลำดัับนิิวคลีีโอไทด์์ของตััวอย่่างหลายตััวอย่่างพร้้อมกััน

ในรัันเดีียว (Jain et al., 2016; ONT, 2025b)

	 2. การหาลำดัับนิิวคลีีโอไทด์์ (sequencing)

	 กระบวนการหาลำดัับนิิวคลีีโอไทด์์เกิิดขึ้้�นเมื่่�อโมเลกุุล DNA หรืือ RNA เคลื่่�อนผ่่าน nanopore ภายใต้้การควบคุุม

ของ motor protein โปรตีีนเอนไซม์นี้้�ควบคุุมความเร็็วในการผ่่านของนิิวคลีีโอไทด์แต่่ละตััวผ่่าน pore เพื่่�อให้้แต่่ละ 

นิิวคลีีโอไทด์์อยู่่�ในพื้้�นที่่�ตรวจจัับของ pore ในเวลาที่่�เหมาะสมที่่�สุุด การไหลของโมเลกุุลของสายนิิวคลีีโอไทด์์ผ่่าน pore 

จะทำให้้เกิิดการเปลี่่�ยนแปลงของกระแสไอออนที่่�เป็็นเอกลัักษณ์์ตามลำดัับนิิวคลีีโอไทด์์แต่่ละตััว โดย flow cell ของ 

Nanopore sequencing ประกอบด้ว้ย 2,048 nanopore แบ่ง่ออกเป็น็ 4 กลุ่่�ม กลุ่่�มละ 512 pore แต่ล่ะ pore สามารถ

ตรวจจัับโมเลกุุลที่่�ผ่่านได้้พร้้อมกััน การต่่อ adapter เข้้ากัับปลายสาย DNA หรืือ RNA ท ำให้้โมเลกุุลของสาย 

นิิวคลีีโอไทด์์เข้้าสู่่� pore ได้้อย่่างเหมาะสมและสามารถตรวจจัับสััญญาณได้้ครบถ้้วน (Meyer et al., 2025) เมื่่�อโมเลกุุล

ของสายนิิวคลีีโอไทด์ผ่่าน pore ครบทั้้�งสาย โปรตีีนมอเตอร์์จะหลุุดออก ท ำให้้ pore พร้้อมสำหรัับโมเลกุุลของสาย 

นิิวคลีีโอไทด์์ถััดไป กระบวนการนี้้�ทำให้้สามารถหาลำดัับนิิวคลีีโอไทด์์ได้้อย่่างต่่อเนื่่�องและแม่่นยำ

	 3. การรวบรวมและวิิเคราะห์์ข้้อมููล (data acquisition and analysis)

	 สััญญาณไฟฟ้้าท่ี่�ได้้จากการผ่่าน pore จะถููกตรวจจัับโดยวงจรรวม  (ASIC) ภายในอุุปกรณ์์ และส่่งต่่อไปยัง

ซอฟต์์แวร์์ เช่่น MinKNOW เพื่่�อประมวลผลสััญญาณไฟฟ้้าเป็็นลำดัับนิิวคลีีโอไทด์์ (basecalling) กระบวนการนี้้�เปลี่่�ยน

ข้้อมููลไฟฟ้้าในรููป Fast 5 หรืือ POD5 ให้้เป็็นข้้อมููลลำดัับนิิวคลีีโอไทด์์ที่่�อ่่านได้้ในรููป Fastq ซึ่่�งสามารถนำไปสร้้างไฟล์์ 

FASTA และนำไปวิิเคราะห์์ชีีวสารสนเทศต่่อไปได้้ เช่่น การประกอบจีีโนม  การวิิเคราะห์์สายพัันธุ์์�ไวรััส หรืือการศึึกษา

ความหลากหลายของไวรััสในงานเฝ้้าระวัังโรคอุุบััติิใหม่่ (Clarke et al., 2009; Jain et al., 2016)

เครื่่�องมืือและแพลตฟอร์์ม Nanopore sequencing 

	 Nanopore sequencing มีีการพััฒนาแพลตฟอร์์มและเครื่่�องมืือหลายรุ่่�นที่่�ตอบสนองต่่อวััตถุุประสงค์์การใช้้งาน

ที่่�แตกต่่างกััน ตั้้ �งแต่่การวิิเคราะห์์ตััวอย่่างเพีียงเล็็กน้้อยไปจนถึึงการทำ sequencing แบบ high-throughput โดยมีี 

รููปแบบของเครื่่�องมืือหลัักหลายแพลตฟอร์์ม ดัังนี้้� MinION, Flongle, GridION และ PromethION (ภาพที่่� 11) ซึ่่�งมี ี

รายละเอีียดดัังนี้้�

	 1.	 MinION เป็็นอุปุกรณ์ข์นาดเล็็ก น้้ำหนัักเบา สามารถต่อ่เข้า้กับัคอมพิวเตอร์พ์กพา เหมาะสำหรับังานภาคสนาม

และการศึึกษาที่่�ต้้องการความยืืดหยุ่่�นสููง มีี  throughput ป านกลางและสามารถทำ sequencing แบบ long-read  

ได้้เหมาะสมกัับการตรวจหาไวรััสหรืือจีีโนมขนาดเล็็ก 
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	 2.	 Flongle เป็็นรุ่่�นย่่อยของ MinION ออกแบบมาเพื่่�อรัันตััวอย่่างขนาดเล็็กหรืือ single-use sequencing chip  

ทำให้้ลดค่่าใช้้จ่่ายและประหยััดเวลาสำหรัับตััวอย่่างจำนวนน้้อย

	 3.	 GridION เป็็นแพลตฟอร์์มขนาดกลาง รองรัับการรัันพร้้อมกัันได้้สููงสุุด 5 flow cell และสามารถประมวลผล

แบบ real-time เหมาะสำหรัับห้้องปฏิิบััติิการที่่�ต้้องการ throughput มากขึ้้�น 

	 4.	 PromethION เป็็นแพลตฟอร์์ม high-throughput ที่่�รองรัับ flow cell จำนวนมากพร้้อมกััน เหมาะสำหรัับ

การทำ sequencing ของจีีโนมขนาดใหญ่่หรืือการเฝ้้าระวัังไวรััสในระดัับประชากร โดย throughput สููงสุุดสามารถเกิิน 

100 Gb ต่่อ flow cell ต่่อรััน

	 ความแตกต่่างหลัักระหว่่างแพลตฟอร์์มเหล่่านี้้�อยู่่�ที่่� throughput, ความยืืดหยุ่่�น และความสะดวกในการใช้้งาน

ภาคสนาม นอกจากนี้้� Nanopore sequencing ยังมีคีวามก้าวหน้า้ในการพัฒันา flow cell และ nanopore chemistry 

อย่่างต่่อเนื่่�อง เช่่น การปรัับปรุุงจำนวน pore ต่่อ flow cell, การพััฒนา nanopore protein ให้้เสถีียรขึ้้�น, และการ

ปรับัปรุงุ motor protein และ buffer system เพื่่�อเพิ่่�มความแม่น่ยำและความทนทานของสัญัญาณกระแสไอออน ทำให้้

ปััจจุุบัันสามารถถอดรหััสลำดัับสารพัันธุุกรรมได้้รวดเร็็วและเชื่่�อถืือได้้มากขึ้้�น (Jain et al., 2016; ONT, 2025c)

ตารางที่่� 5 รููปแบบเครื่่�องมืือและแพลตฟอร์์ม Nanopore sequencing (ONT, 2025c)

เครื่่�องมืือ/
แพลตฟอร์์ม

throughput
ความ

ยืืดหยุ่่�น
การใช้้งานเชิิงภาคสนาม จุุดเด่่น ข้้อจำกััด

MinION ปานกลาง  

(~10–20 Gb/รััน)

สููง เหมาะสำหรัับภาคสนาม 

พกพาง่่าย

ขนาดเล็็ก น้้ำหนัักเบา เชื่่�อมต่่อกัับ

คอมพิิวเตอร์์พกพาได้้

throughput จำกััดสำหรัับ 

โครงการขนาดใหญ่่

Flongle ต่่ำ (~1–2 Gb/รััน) สููง เหมาะสำหรัับตััวอย่่าง 

จำนวนน้้อย

ใช้้ single-use flow cell  

ลดค่่าใช้้จ่่าย ประหยััดเวลา

ไม่่เหมาะสำหรัับงาน  

high-throughput

GridION ปานกลาง–สููง 

(~50–60 Gb/รััน,  

5 flow cell)

ปานกลาง ใช้้ในห้้องปฏิิบััติิการ  

เหมาะสำหรัับงาน  

semi-high-throughput

รัันพร้้อมกัันได้้หลาย flow cell  

ประมวลผล real-time

ขนาดใหญ่่  

ไม่่สะดวกพกพา

PromethION สููงมาก (>100 Gb/flow 

cell/รััน)

ต่่ำ– 

ปานกลาง

เหมาะสำหรัับห้้องปฏิิบััติิการ

ระดัับ high-throughput

Throughput สููง เหมาะสำหรัับจีีโนม

ขนาดใหญ่่และการเฝ้้าระวัังประชากร

ขนาดใหญ่่ ค่่าอุุปกรณ์์สููง  

ใช้้พื้้�นที่่�มาก

ภาพที่่� 11 แพลตฟอร์์มต่่าง ๆ ของ Nanopore sequencing (Hall et al., 2020)
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คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

ชีีวสารสนเทศศาสตร์์สำหรัับการวิิเคราะห์์หาลำดัับนิิวคลีีโอไทด์์ด้้วยเทคโนโลยีี Nanopore

	 ชีีวสารสนเทศศาสตร์์ (bioinformatics) เป็็นศาสตร์สหวิิทยาการที่่�ผสานชีีววิิทยา วิ ิทยาการคอมพิิวเตอร์์ 

คณิิตศาสตร์ และสถิิติิ เพื่่�อจััดเก็็บ วิ ิเคราะห์์ และตีีความข้อมููลทางชีีววิิทยาท่ี่�มีีความซับซ้้อนและมีีปริมาณมาก เช่่น  

ข้้อมููลจีีโนม ข้ ้อมููลการแสดงออกของยีีน (gene expression) และโครงสร้้างโปรตีีน เป็็นต้้น การประยุุกต์์ใช้้งาน

ครอบคลุุมการหาลำดัับสารพัันธุุกรรม และโปรตีีน การกำหนดฟัังก์์ชัันของยีีน การทำ genome annotation การศึึกษา

ความสัมพันธ์์ระหว่่างยีีนกัับโรค รวมถึึงการสร้้างแบบจำลองเชิิงทฤษฎีีเพื่่�อการทำนายทางชีีววิิทยา (Makałowski and 

Shabardina, 2020)

การประมวลผลข้้อมููลเบื้้�องต้้นสำหรัับเทคโนโลยีี Nanopore 

	 ก	ารประมวลผลข้้อมููลเบื้้�องต้้น (initial data processing) เป็็นขั้้�นตอนสำคััญที่่�มุ่่�งเน้้นการเปลี่�ยนสััญญาณ 

ข้้อมููลดิิบ (raw data) ท่ี่�ได้้จากเครื่่�องให้้เป็็นลำดัับนิิวคลีีโอไทด์ที่่�สามารถนำไปใช้้วิิเคราะห์์ต่่อได้้ โดยครอบคลุุมทั้้�งการ

จััดการกัับชุุดข้้อมููลลำดัับนิิวคลีีโอไทด์ขนาดใหญ่่และการแก้้ปััญหาด้้านความถูกต้้องของข้้อมููลลำดัับนิิวคลีีโอไทด์ 

กระบวนการหลัักที่่�เกี่่�ยวข้้องคืือ basecalling ซึ่่�งเป็็นการแปลงสััญญาณทางกายภาพที่่�บัันทึึกได้้จากเครื่่�องวิิเคราะห์์ 

ที่่�เป็็นสััญญาณกระแสไฟฟ้้าให้้กลายเป็็นลำดัับนิิวคลีีโอไทด์์ (A, T, C, G) ความถููกต้้องของ basecalling เป็็นปััจจััยที่่�

กำหนดคุุณภาพของข้้อมููล โดยทั่่�วไปจะประเมิินด้้วยค่่าคุุณภาพ (quality score หรืือ phred score, Q) ซึ่่�งสะท้้อน 

ความน่่าจะเป็็นที่่�เบสจะถููกระบุุผิิด เช่่น Q30 หมายถึึง ความน่่าจะเป็็นที่่�เกิิดความผิิดพลาดเพีียง 1 ใน 1,000 หรืือความ

แม่่นยำ 99.9% (Ewing and Green, 1998) สำหรัับเทคโนโลยีี Nanopore ข้้อมููลดิิบจะอยู่่�ในรููปคลื่่�นกระแสไฟฟ้้าที่่�

เปลี่่�ยนแปลงตามชนิิดของนิิวคลีีโอไทด์์เบสที่่�ผ่่าน Nanopore โดยใช้้โปรแกรม basecaller เช่่น Guppy หรืือ Dorado 

ซึ่่�งจะใช้้แบบจำลองทางคณิิตศาสตร์์และ deep learning ในการตีีความคลื่่�นสััญญาณเพื่่�อเพิ่่�มความแม่่นยำและลดอััตรา

ความผิิดพลาด (error rate) (Wick et al., 2019; Zhang et al., 2023) ซึ่่�งช่่วยให้้ได้้ข้้อมููลลำดัับนิิวคลีีโอไทด์์ที่่�มีีคุุณภาพ

สููงขึ้้�นและเหมาะสมสำหรัับการวิิเคราะห์์ทางชีีวสารสนเทศในขั้้�นถััดไป

การเตรีียมข้้อมููลเพื่่�อให้้เหมาะสมสำหรัับวิิเคราะห์์ผลทางชีีวสารสนเทศศาสตร์์

	 ก	ารเตรีียมข้อมููลก่่อนการวิิเคราะห์์ผลทางชีีวสารสนเทศศาสตร์เป็น็ขั้้�นตอนสำคััญที่่�ช่่วยให้้ข้อ้มููลลำดัับนิิวคลีีโอไทด์

มีีคุุณภาพและเชื่่�อถืือได้้ เพื่่�อให้้ได้้ข้้อมููลที่่�เหมาะสมต่่อการวิิเคราะห์์ เช่่น mapping, assembly ตลอดจนการตรวจหา

สายพัันธุ์์� ให้้มีีความแม่่นยำและเชื่่�อถืือได้้มากยิ่่�งขึ้้�น โดยประกอบด้้วยกระบวนการหลัักดัังนี้้�

	 1.	 Demultiplex

	 	 เป็น็กระบวนการแยกข้อ้มูลูลำดับันิวิคลีีโอไทด์ของหลายตััวอย่า่งที่่�อ่่านลำดัับนิวิคลีีโอไทด์พ์ร้้อมกันัในรอบเดีียว 

(multiplexing) ออกเป็็นชุุดข้้อมููลย่่อยของแต่่ละตััวอย่่าง โดยอาศััยบาร์์โค้้ด (barcode) หรืือ Index ที่่�ติิดมากัับไลบรารีี 

เครื่่�องมืือที่่�นิิยมใช้้ในข้้อมููล Nanopore ได้้แก่่ qcat และ Porechop รวมถึึง AdapterRemoval ซ่ึ่�งรองรัับหลาย

แพลตฟอร์์ม (Lindgreen, 2012)



26

คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

	 2. 	Quality filtering

		  เป็น็กระบวนการกรองข้อ้มูลูลำดับันิวิคลีีโอไทด์ท์ี่่�มีีคุณุภาพต่่ำออก โดยอาศัยัเกณฑ์จ์ากค่า่ Q score หรืือความ

ยาวของ sequence read เพื่่�อคงไว้้เฉพาะข้้อมููลลำดัับนิิวคลีีโอไทด์์ที่่�มีีความน่่าเชื่่�อถืือ เครื่่�องมืือที่่�นิิยมใช้้ ได้้แก่่ 

NanoFilt, PRINSEQ และ FASTX-Toolkit (Schmieder and Edwards, 2011; De Coster et al., 2018)

	 3. 	Adapter trimming

	 	 เป็น็กระบวนการตััดลำดัับนิิวคลีีโอไทด์ท่ี่�เป็น็ส่่วน adapter จากขั้้�นตอนการเตรีียมไลบรารีีออกจาก sequence 

read เพื่่�อป้้องกัันการกระทบต่่อกระบวนการ mapping หรืือ assembly เครื่่�องมืือที่่�นิิยมใช้้สำหรัับ Nanopore ได้้แก่่ 

Cutadapt (Martin, 2011), Skewer (Jiang et al., 2014) และ Porechop (Lindgreen, 2012)

การวิิเคราะห์์ลำดัับนิิวคลีีโอไทด์์เพื่่�อการประยุุกต์์ใช้้งานสำหรัับเทคโนโลยีี Nanopore 

	 1.	 การเทีียบข้้อมููลกัับจีีโนมอ้้างอิิง (mapping to reference genome)

	 	 ก	ารเทีียบข้้อมููลลำดัับนิิวคลีีโอไทด์์สำหรัับ Nanopore เป็็นการจััดเรีียงสายนิิวคลีีโอไทด์์ของ sequence read 

เข้้ากัับจีีโนมอ้้างอิิงของไวรััสที่่�ทราบแล้้ว เพื่่�อตรวจหาความแตกต่่างทางพัันธุุกรรม  เช่่น การกลายพัันธุ์์�และการระบุุ 

สายพัันธุ์์� เครื่่�องมืือที่่�นิิยมใช้้คืือ Minimap2 ซึ่่�งรองรัับ long-reads ได้้อย่่างมีีประสิิทธิิภาพ (Li, 2018) วิิธีีนี้้�เหมาะสำหรัับ

ไวรััสที่่�มีีจีีโนมอ้้างอิิงอยู่่�แล้้ว เช่่น SARS-CoV-2 หรืือ Influenza virus

	 2.	 การประกอบลำดัับนิิวคลีีโอไทด์์ (De Novo assembly) 

	 	 สำหรัับไวรััสอุุบััติิใหม่่หรืือไวรััสท่ี่�ไม่่มีี  reference genome จำเป็็นต้้องประกอบ sequence reads จาก 

Nanopore sequencing ด้้วยอััลกอริิทึึม overlap layout consensus (OLC) เพื่่�อสร้้าง contig/scaffold เครื่่�องมืือที่่�

นิิยมใช้้สำหรัับ Nanopore sequencing ได้้แก่่ Canu, Miniasm, Flye, VICUNA (Koren et al., 2017) การประกอบ

ลำดัับนิิวคลีีโอไทด์์แบบนี้้�ช่่วยให้้ได้้จีีโนมทั้้�งหมด (whole genome) ของไวรััสใหม่่และสามารถนำไปวิิเคราะห์์ 

downstream ต่่อไปได้้

	 3.	 การจำแนกไวรััสและสายพัันธุ์์� (virus identification and lineage typing)

	 	 การจำแนกไวรััสและสายพัันธุ์์�  สามารถใช้้ BLAST เปรีียบเทีียบกัับ genome database เช่่น GenBank 

(Altschul et al., 1990) หรืือใช้้เครื่่�องมืือ kraken2 และ centrifuge สำหรัับการจำแนกเชิิงอนุุกรมวิิธานในงาน 

metagenomics (Wood and Salzberg, 2014; Kim et al., 2016) ส่ ่วนการจำแนกสายพัันธุ์์�ทำได้้โดย multiple 

sequence alignment (MSA) เช่น่ MAFFT (Katoh and Standley, 2013) และสร้า้ง phylogenetic tree ด้ว้ย RAxML 

หรืือ Nextstrain (Stamatakis, 2014; Hadfield et al., 2018) 

	 4.	 การวิิเคราะห์์การกลายพัันธุ์์�และความหลากหลายทางพัันธุุกรรมของไวรััส (mutation and genetic 

diversity analysis)

	 	 การวิิเคราะห์์การกลายพัันธุ์์�จาก Nanopore ใช้้ variant calling เช่่น SNP และ InDel โดยเครื่่�องมืือที่่�รองรัับ 

long-reads ได้้แก่่ Medaka และ Nanopolish สำหรัับการติิดตามการกลายพัันธุ์์�ของสายพัันธุ์์�ที่่�น่่ากัังวล (variants of 

concern (VOCs)) หรืือการติิดตามการกลายพัันธุ์์�ของสายพัันธุ์์�ที่่�น่่าสนใจ (variants of interest (VOIs)) และใช้้  

Intra-host diversity scripts, Allele Frequency calculators ในการวิิเคราะห์์ความหลากหลายทางพัันธุุกรรมท่ี่�

ครอบคลุุมทั้้�งความหลากหลายภายในโฮสต์์ (intra-host diversity) และความหลากหลายระหว่่างโฮสต์์ (inter-host 

diversity) ซึ่่�งสำคััญต่่อการทำความเข้้าใจกระบวนการแพร่่ระบาดและกลไกการดื้้�อยา (Hall et al. 2024)
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ตารางที่่� 6 รููปแบบการวิิเคราะห์์ลำดัับนิิวคลีีโอไทด์์และเครื่่�องมืือ bioinformatics สำหรัับ Nanopore sequencing

รููปแบบการวิิเคราะห์์ หลัักการ/วััตถุุประสงค์์ ตััวอย่่างเครื่่�องมืือ/ซอฟต์์แวร์์ 
(Nanopore) การประยุุกต์์ใช้้

mapping to  
reference genome

จััดเรีียง sequence reads เข้้ากัับจีีโนมอ้้างอิิง
เพื่่�อตรวจหาความแตกต่่างทางพัันธุุกรรม

Minimap2, GraphMap ตรวจสอบการกลายพัันธุ์์�, ระบุุสายพัันธุ์์�, 
วิิเคราะห์์ความหลากหลายทางพัันธุุกรรม

De Novo assembly ประกอบ reads ทัับซ้้อนกัันเป็็น contig/
scaffold โดยไม่่ใช้้ reference

Canu, Miniasm, Flye,  
VICUNA

ศึึกษาไวรััสอุุบััติิใหม่่หรืือไวรััสที่่�ไม่่มีี  
reference genome

virus identification 
(taxonomic classification)

ระบุุชนิิดไวรััสจาก sequence reads โดย
เปรีียบเทีียบกัับ genome database

BLAST, kraken2, centrifuge การจำแนกชนิิดไวรััส,  
การวิิเคราะห์์ metagenomics

lineage typing / 
phylogenetic analysis

จััดเรีียง sequences และสร้้าง phylogenetic 
tree เพื่่�อระบุุสายพัันธุ์์�และวิิวััฒนาการ

MAFFT, Clustal Omega, 
RAxML, Nextstrain, Pangolin

ติิดตามการแพร่่ระบาด, ระบุุสายพัันธุ์์�, วิิเคราะห์์
วิิวััฒนาการของไวรััส

variant calling ตรวจหาการกลายพัันธุ์์� เช่่น SNP, InDel Medaka, Nanopolish, iVar ระบุุ variants of concern (VOCs) / variants 
of interest (VOIs), ติิดตามการกลายพัันธุ์์�

genetic diversity analysis วิิเคราะห์์ความหลากหลายทางพัันธุุกรรมทั้้�ง
ภายในและระหว่่างโฮสต์์

Intra-host diversity scripts, 
Allele Frequency calculators

ศึึกษา Intra-host diversity (quasispecies), 
Inter-host diversity, พลวััตการแพร่่ระบาด, 

กลไกการดื้้�อยา

ข้้อจำกััดและความท้้าทายของเทคโนโลยีี Nanopore

	 เทคโนโลยีี  Nanopore ยั ังคงมีีข้้อจำกััดและความท้้าทายหลายประการที่่�ควรพิิจารณา ป ระเด็็นหลัักคืือ ความ

แม่่นยำของการอ่่านลำดัับนิิวคลีีโอไทด์์ แม้้ว่่าเทคโนโลยีี basecaller ที่่�ใช้้ deep learning เช่่น Guppy หรืือ Dorado 

จะช่่วยลดอััตราความผิิดพลาดได้้บ้้าง แต่่ความผิิดพลาดประเภท  insertion และ deletion (indels) ยั ังคงสููงกว่่า

เทคโนโลยีี short-read ในบางกรณีี (Jain et al., 2016; Wick et al., 2019)

	 นอกจากนี้้�คุุณภาพของข้้อมููลลำดัับนิิวคลีีโอไทด์ยัังขึ้้�นอยู่่�กับปััจจััยทางเทคนิิคหลายด้้าน เช่่น คุ ณภาพตััวอย่่าง 

เริ่่�มต้้นซึ่่�งรวมถึึงความสมบููรณ์์ของ DNA/RNA และเสถีียรของ pore ระหว่่างการอ่่านลำดัับนิิวคลีีโอไทด์์ (Payne  

et al., 2019) นอกจากนี้้�ไฟล์์ข้้อมููลลำดัับนิิวคลีีโอไทด์ ที่่�ได้้จาก Nanopore เป็็นไฟล์์ raw signal ที่่�ซัับซ้้อน  

ทำให้้การประมวลผลและการวิิเคราะห์์ข้้อมููลต้้องอาศััยความชำนาญด้้าน bioinformatics โดยเฉพาะในการจััดการ 

long-read data (De Coster et al., 2018) อีีกหนึ่่�งข้้อจำกััดคืือ ความล่่าช้้าในการประมวลผลข้้อมููลลำดัับนิิวคลีีโอไทด์์

ขนาดใหญ่่ เนื่่�องจากไฟล์์ long-read มีขีนาดใหญ่่และต้้องใช้ห้น่ว่ยความจำสููงในการ mapping, assembly หรืือ variant 

calling จำเป็็นต้้องใช้้เครื่่�องคอมพิิวเตอร์์ที่่�มีีประสิิทธิิภาพสููงและซอฟต์์แวร์์ท่ี่�เหมาะสม  (Shafin et al., 2020)  

นอกจากนี้้�ความหลากหลายของ error profiles ในแต่่ละ flow cell และการเปลี่�ยนแปลงของสภาพแวดล้้อม 

ขณะทดลอง เช่่น อุ ณหภููมิิหรืือความชื้้�น อาจส่่งผลต่่อ reproducibility ของการอ่่านลำดัับนิิวคลีีโอไทด์์ ท ำให้้การ

วิิเคราะห์์ข้้อมููลเชิิงปริิมาณหรืือ comparative analysis ระหว่่างตััวอย่่างต้้องระมััดระวััง (Wick et al., 2019)

	 ดัังนั้้�น แม้้ว่่าเทคโนโลยีี Nanopore จะมีีข้้อดีีด้้านความยืืดหยุ่่�น ความสามารถในการอ่่าน long-read และความ

สะดวกในการใช้้งาน แต่่การประมวลผลและวิิเคราะห์์ข้้อมููลอย่่างถููกต้้องต้้องอาศััยความเชี่่�ยวชาญด้้าน bioinformatics 

และควรมีี  hardware ท่ี่�เหมาะสมและเพีียงพอ รวมถึึงการควบคุุมคุุณภาพของตััวอย่่างที่่�เหมาะสม  เพื่่�อให้้ได้้ผลลััพธ์์ที่่� 

เชื่่�อถืือได้้
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	 การตรวจหาลำดัับนิิวคลีีโอไทด์์ของไวรััสมีีความสำคััญต่่อการตรวจ

วิินิิจฉััยโรค การเฝ้้าระวัังเชื้้�อก่่อโรคอุุบััติิใหม่่ และการศึึกษาวิิวััฒนาการของ

ไวรััส โดยการหาจีีโนมทั้้�งหมด (whole genome sequencing) สามารถระบุุ

ชนิิดไวรััส ติิดตามสายพัันธุ์์� และตรวจจัับการกลายพัันธุ์์�ที่่�มีีผลต่่อความรุุนแรง

หรืือการแพร่่กระจายได้้ อย่่างไรก็็ตามการหาลำดัับนิิวคลีีโอไทด์์ของไวรััส

โดยตรงจากตััวอย่่างทางคลิินิิกหรืือสิ่่�งแวดล้้อมมัักพบข้้อจำกััดจากปริมาณ

ไวรััสที่่�ต่่ำและการปะปนของสารพัันธุุกรรมจากโฮสต์์ เทคโนโลยีีการหาลำดัับ

นิิวคลีีโอไทด์์ด้้วยวิิธีี  Nanopore sequencing แม้้สามารถตรวจหา 

สารพัันธุุกรรมของสิ่่�งมีีชีีวิิตได้้หลากหลายชนิิด แต่่ปััญหาสำคััญคืือการมีี 

สารพัันธุุกรรมของโฮสต์์ในปริิมาณสููงกว่่าสารพัันธุุกรรมของไวรััส ดั งนั้้�นการ

เพิ่่�มปริิมาณสารพัันธุุกรรมของไวรััสจึึงเป็็นขั้้�นตอนที่่�จำเป็็นเพื่่�อเพิ่่�มความไวใน

การตรวจพบไวรััส เทคนิิคท่ี่� ใช้้กัันอย่่างแพร่่หลายคืือ Sequence-

Independent Single-Primer Amplification (SISPA) ซึ่่�งสามารถประยุุกต์์

ร่่วมกัับเทคโนโลยีี  Nanopore sequencing เพื่่�อเพิ่่�มประสิิทธิิภาพในการ

ตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััส

		 SISPA ได้้ถููกพััฒนาขึ้้�นเพื่่�อเพิ่่�มปริิมาณสารพัันธุุกรรมอย่่างไม่่จำเพาะ 

ลำดัับนิิวคลีีโอไทด์ โดยใช้้ไพรเมอร์์สุ่่�มที่่�มีีส่่วนปลาย (tagged random 

primer) เพื่่�อสร้้างตำแหน่่งจัับไพรเมอร์์ร่่วมกััน (universal primer binding 

site) ในทุุกโมเลกุุลของสารพัันธุุกรรมในตััวอย่่าง จากนั้้�นสามารถใช้้เพีียง 

tagged random primer เส้้นเดีียวในการเพิ่่�มปริิมาณ ทำให้้ได้้ปริิมาณ DNA 

เพีียงพอสำหรัับการตรวจหาลำดัับนิิวคลีีโอไทด์โดยไม่่จำเป็็นต้้องทราบลำดัับ

นิิวคลีีโอไทด์์ของเป้้าหมาย (Reyes and Kim, 1991; Bahador et al., 2021) 

ความสามารถนี้้�ทำให้้ SISPA มีีความสำคััญอย่่างมากในการศึึกษาจีีโนมไวรััสที่่�

เทคนิิค
Sequence-Independent 
Single-Primer Amplification

บทที่่� 4
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ไม่่เคยพบมาก่่อนและการวิิจััยเชิิงเมตาจีีโนมิิกส์์ (Djikeng et al., 2008) ในช่่วงไม่่กี่่�ปีีที่่�ผ่่านมา เทคโนโลยีี Nanopore 

sequencing ได้้กลายเป็็นเครื่่�องมืือสำคััญสำหรัับการหาลำดัับนิิวคลีีโอไทด์์ เนื่่�องจากสามารถอ่่านลำดัับ DNA หรืือ RNA 

ได้แ้บบเรีียลไทม์ ให้ผ้ลการอ่่านลำดัับนิวิคลีีโอไทด์ที่่�ยาว (long-read sequencing) และมีีศักัยภาพในการประยุุกต์ใ์ช้ภ้าค

สนามทำให้้เหมาะสมต่อการตรวจหาไวรััสในสถานการณ์์จริิง เช่น่ การเฝ้า้ระวัังโรคระบาดหรืือการวิิเคราะห์์เชิงินิิเวศวิทยา

ของไวรััส (Jain et al., 2016) การผสาน SISPA เข้้ากัับ Nanopore sequencing จึึงช่่วยขยายศัักยภาพของการตรวจ

วิิเคราะห์์สารพัันธุุกรรมไวรััส โดย SISPA ช่่วยเพิ่่�มปริิมาณสารพัันธุุกรรมของไวรััสจากตััวอย่่างที่่�มีีปริิมาณไวรััสน้้อยหรืือ

หลากหลายชนิดเชื้้�อ ขณะที่่� Nanopore sequencing ช่ วยให้้ได้้ข้้อมููลเชิิงลึึกของจีีโนมทั้้�งในด้้านโครงสร้้างและความ

หลากหลายเชิิงพัันธุุกรรม  การผสมผสานเทคนิิคทั้้�งสองจึึงเป็็นแนวทางที่่�ทรงพลัังในการค้้นพบไวรััสใหม่่ การเฝ้้าระวััง

การกลายพัันธุ์์� และการทำความเข้้าใจการแพร่่กระจายของไวรััสในระดัับโมเลกุุล

หลัักการของเทคนิิค SISPA

	 SISPA เป็น็เทคนิคิการเพิ่่�มปริมิาณสารพันัธุกุรรมที่่�ไม่ต่้อ้งอาศัยัข้อ้มูลูลำดับันิวิคลีีโอไทด์ซ์ึ่่�งถูกูพัฒันาขึ้้�นเพื่่�อรองรับั

การศึึกษาจีีโนมที่่�ไม่เ่คยพบหรืือมีีปริมิาณน้อ้ย โดยเฉพาะอย่า่งยิ่่�งในการค้น้พบไวรัสัใหม่ ่(viral discovery), การหาลำดับั 

จีีโนมทั้้�งหมด (whole genome sequencing) และการวิิเคราะห์์เชิิงเมตาจีีโนมิิกส์์ (metagenomics) หลัักการสำคััญ

ของ SISPA อยู่่�ที่่�การใช้้ tagged random primer เพื่่�อทำให้้ทุุกโมเลกุุลของ DNA ที่่�สกััดมามีีลำดัับนิิวคลีีโอไทด์์ซึ่่�งเป็็น

ตำแหน่่งจัับร่่วมกััน (universal primer binding site) ส่่งผลให้้สามารถเพิ่่�มปริิมาณสารพัันธุุกรรมทั้้�งหมดในตััวอย่่างได้้

โดยใช้้เพีียงไพรเมอร์์เส้้นเดีียว (Reyes and Kim, 1991; Davood et al., 2021)  

	 กระบวนการ SISPA ประกอบด้้วย 3 ขั้้�นตอนหลััก (ภาพที่่� 12) ดัังนี้้�

	 1.	 การสร้้างสายกรดนิิวคลีีอิิกเริ่่�มต้้น (initial strand synthesis) 

	 	 การสร้้างสายกรดนิิวคลีีอิิกเริ่่�มต้้นเป็็นขั้้�นตอนแรกของเทคนิิค SISPA โดยหากเป็็นตััวอย่่าง RNA เช่่น ไวรััสที่่�มีี

สารพัันธุุกรรมเป็็นชนิิด RNA จะต้้องผ่่านกระบวนการ reverse transcription (RT) เพื่่�อเปลี่่�ยน RNA ให้้เป็็นสาย cDNA 

ก่่อนนำไปใช้้เป็็นแม่่แบบในการเพิ่่�มปริิมาณ (Djikeng et al., 2008; Davood et al., 2021) ส่่วนกรณีีที่่�เป็็น DNA เช่่น 

ไวรััสที่่�มีีสารพัันธุุกรรมเป็็นชนิิด DNA สามารถใช้้เป็็นแม่่แบบในการเพิ่่�มปริมาณได้้โดยตรงโดยไม่่ต้้องผ่่านขั้้�นตอน RT   

โดยในกระบวนการนี้้�จะใช้้ tagged random primer ซ่ึ่�งประกอบด้้วยสองส่่วนหลััก คืื อ ส่ ่วน random sequence 

(N-mer) เช่่น N6, N8 หรืือ N14 ที่่�ปลาย 3′ ของไพรเมอร์์ ซึ่่�งทำหน้้าที่่�สุ่่�มจัับกัับตำแหน่่งต่่าง ๆ ของสาย template 

(random priming) และทำหน้้าท่ี่�เป็็นจุุดเริ่่�มต้้นของการสัังเคราะห์์สายนิิวคลีีโอไทด์์ใหม่่ และส่่วน defined tail 

sequence ที่่�ปลาย 5′ ของไพรเมอร์์ ซึ่่�งเป็็นลำดัับนิิวคลีีโอไทด์์ที่่�ทราบล่่วงหน้้าและจะถููกผนวกรวมเข้้ากัับลำดัับ 

นิิวคลีีโอไทด์์ที่่�ถููกสร้้างขึ้้�นใหม่่ ทำให้้โมเลกุุล DNA ทั้้�งหมดมีีลำดัับนิิวคลีีโอไทด์์เหมืือนกัันที่่�ปลาย ซึ่่�งจะเป็็นตำแหน่่งจัับ

สำหรัับการเพิ่่�มปริิมาณสารพัันธุุกรรมในขั้้�นตอนถััดไป (Reyes and Kim, 1991; Davood et al., 2021)

	 2.	 การสัังเคราะห์์ DNA สายคู่่� (second-strand synthesis) 

	 	 การสัังเคราะห์์ DNA สายคู่่�  เป็็นขั้้�นตอนต่่อจากการสร้้างสายกรดนิิวคลีีอิิกเริ่่�มต้น เพื่่�อเปลี่่�ยนสาย 

นิิวคลีีโอไทด์์ที่่�ได้้จากขั้้�นตอนแรกให้้เป็็น dsDNA ซึ่่�งเหมาะสมสำหรัับการนำไปใช้้ในกระบวนการเพิ่่�มปริิมาณ 

สารพัันธุุกรรมในขั้้�นตอนถััดไป สายนิิวคลีีโอไทด์์ที่่�สัังเคราะห์์ขึ้้�นใหม่่จากการใช้้ tagged random primer จะมีี defined 

tail sequence ติิดอยู่่�ท่ี่�ปลาย 5′ ของสายที่่�สร้้างขึ้้�น ท ำให้้สามารถใช้้ tail นี้้ �เป็็นจุุดเริ่่�มต้นในการสัังเคราะห์์ 

สายนิิวคลีีโอไทด์์ตรงข้้ามเพื่่�อให้้ได้้ dsDNA กระบวนการนี้้�สามารถทำได้้โดยใช้้เอนไซม์์ Klenow fragment ซึ่่�งเป็็น DNA 

polymerase I ท่ี่�ผ่า่นการย่อ่ยด้ว้ย subtilisin หรืือ trypsin เพื่่�อตัดัส่ว่น N-terminal ที่่�มีี 5′→3′ exonuclease activity 
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ออกไป เหลืือเพีียง 5′→3′ polymerase activity และ 3′→5′ exonuclease activity (proofreading) สำหรัับการ

สัังเคราะห์์สายนิิวคลีีโอไทด์์ตรงข้้ามท่ี่�มีีสายนิิวคลีีโอไทด์์ที่่�มีี  tail sequence เป็็นแม่่แบบ ผลลััพธ์์ที่่�ได้้คืือ DNA สายคู่่� 

ซึ่่�งมีี  tail sequence อยู่่�ที่่�ปลายทั้้�งสองด้้านของทุุกสายนิิวคลีีโอไทด์ การท่ี่�สายนิิวคลีีโอไทด์ทั้้�งหมดถููกทำให้้มีีลำดัับ 

นิิวคลีีโอไทด์ที่่�เหมืือนกัันทั้้�งสองปลายนี้้�ถืือเป็็นหััวใจสำคััญต่่อการใช้้ไพรเมอร์์เพีียงเส้้นเดีียวในการเพิ่่�มปริมาณสาร

พัันธุุกรรมแบบไม่่จำเพาะเจาะจงในขั้้�นตอนต่่อไป (Reyes and Kim, 1991; Djikeng et al., 2008; Davood et al., 

2021)

	 3.	 การเพิ่่�มปริิมาณสารพัันธุุกรรม (amplification)

	 	 การเพิ่่�มปริมาณสารพัันธุุกรรมเป็็นขั้้�นตอนท่ี่�ใช้้เพิ่่�มปริมาณสารพัันธุุกรรมท่ี่�ได้้จากการสัังเคราะห์์ dsDNA  

โดยอาศััยหลัักการของปฏิิกิิริิยา polymerase chain reaction (PCR) หรืือเทคนิิคการเพิ่่�มปริิมาณสารพัันธุุกรรมอื่่�น ๆ 

ในกระบวนการนี้้�จะใช้้ SISPA primer ซึ่่�งเป็็นไพรเมอร์์ที่่�จำเพาะต่่อ defined tail sequence ที่่�ถููกติิดไว้้ที่่�ปลายทั้้�งสอง

ข้้างของทุุกสายของ DNA ในขั้้�นตอนก่่อนหน้้า  เนื่่�องจากสาย DNAทั้้�งหมดมีีลำดัับ tail เดีียวกััน จึึงสามารถใช้้ไพรเมอร์์

เดีียวเพื่่�อเพิ่่�มปริิมาณได้้อย่่างมีีประสิิทธิิภาพ ทำให้้ทุุกสาย DNA ถููกเพิ่่�มปริิมาณในอััตราส่่วนที่่�ใกล้้เคีียงกััน กระบวนการ

นี้้�ช่่วยเพิ่่�มปริิมาณ DNA ให้้เพีียงพอสำหรัับการนำไปหาลำดัับนิิวคลีีโอไทด์์ด้้วยเทคนิิค Nanopore sequencing โดยไม่่

จำ เป็็นต้้องทราบลำดัับนิิ วคลีี โอ ไทด์์ของ เป้้ าหมายล่่ วงหน้้ า  (Reyes  and K im,  1991 ;  D j i keng  

et al., 2008; Davood et al., 2021)

	 	 ดัังนั้้�น ขั้้ �นตอนการเพิ่่�มปริิมาณสารพัันธุุกรรมจึึงเป็็นหััวใจสำคััญที่่�ทำให้้ SISPA สามารถใช้้ตรวจหาหรืือศึึกษา 

จีีโนมของไวรััสที่่�ไม่่เคยพบและมีีปริิมาณไวรััสน้้อยได้้อย่่างมีีประสิิทธิิภาพ โดยสรุุปขั้้�นตอนและรายละเอีียดของเทคนิิค 

SISPA ตามตารางที่่� 7

ตารางที่่� 7 ขั้้�นตอนและรายละเอีียดทางเทคนิิคของวิธิีี SISPA (Reyes and Kim, 1991; Chrzastek et al., 2017; Lewandowska et al., 2021)

ขั้้�นตอน รายละเอีียด
1. การเตรีียมสารพัันธุุกรรม 
แม่่แบบ  
(template preparation)

- การสกััด (extraction): ใช้้ชุุดน้้ำยามาตรฐานในการสกััดกรดนิิวคลีีอิิกทั้้�งหมด (DNA และ RNA) จากตััวอย่่างชีีวภาพ  
เช่่น ซีีรััม เซลล์์เพาะเลี้้�ยง หรืือสิ่่�งส่่งตรวจทางคลิินิิก เช่่น RNeasy Mini Kit (QIAGEN)
- การลดสารพื้้�นหลััง (background reduction): ใช้้วิิธีีกรองผ่่านเมมเบรน 0.22 µM เพื่่�อลดปริิมาณของเซลล์์เจ้้าบ้้านและ 
แบคทีีเรีียขนาดใหญ่่ และการย่่อยด้้วย DNase เพื่่�อลด DNA ของโฮสต์์และแบคทีีเรีียปนเปื้้�อน
- การประเมิินคุุณภาพ: ตรวจสอบความเข้้มข้้นและความบริิสุุทธิ์์�ของสารพัันธุุกรรมที่่�เตรีียมด้้วย NanoDrop หรืือ  
Qubit dsDNA/RNA HS assay

2. การต่่ออะแดปเตอร์์  
(adapter ligation) หรืือ 
การเติิมไพรเมอร์์แบบแท็็กสุ่่�ม 
(tagged random priming)

- การต่่ออะแดปเตอร์์/ลิิงเกอร์์ (ligation - classical SISPA): ใช้้ DNA ligase เชื่่�อมอะแดปเตอร์์/ลิิงเกอร์์เข้้ากัับปลาย  
dsDNA ที่่�เป็็น blunt end
- การใช้้ไพรเมอร์์แบบแท็็กสุ่่�ม (tagged random priming - modern SISPA): ใช้้ chimeric primer ประกอบด้้วย 5′ tag 
sequence และ 3′ random hexamer/octamer เพื่่�อจัับไม่่จำเพาะเจาะจง
- การเติิมหางโพลีี (poly-tailing/poly-gailing): การเติิมหาง poly-A หรืือ poly-G ที่่�ปลาย 3′  
ของ RNA/cDNA แล้้วใช้้ไพรเมอร์์เสริิมที่่�มีีแท็็ก

3. การสัังเคราะห์์สาย cDNA  
สายแรก (first-strand cDNA 
synthesis) และสาย DNA สายที่่�สอง 
(second-strand cDNA synthesis)

- หากสารพัันธุุกรรมแม่่แบบเป็็น RNA จะใช้้เอนไซม์์ reverse transcriptase (เช่่น SuperScript IV) ร่่วมกัับ tagged 
random primers (เช่่น FR26.RV-N, K-8N) เพื่่�อสร้้าง cDNA สายแรกที่่�มีีลำดัับแท็็กที่่�ปลาย 5′ โดยใช้้ใช้้เอนไซม์์ DNA 
polymerase  เช่่น Klenow fragment หรืือ sequenase 2.0 เพื่่�อสร้้าง dsDNA ที่่�มีีแท็็กทั้้�งสองปลาย

4. ปฏิิกิิริิยา PCR โดยใช้้ไพร
เมอร์์เดี่่�ยว (single-primer 
amplification)

- ใช้้ไพรเมอร์์เดี่่�ยวที่่�เป็็น tag sequence จากขั้้�นตอนก่่อนหน้้า ขยายปริิมาณ dsDNA ด้้วย PCR ประกอบด้้วย  
denaturation, annealing, extension ทำซ้้ำ 30–40 cycles โดยใช้้ thermostable polymerase  
เช่่น phusion หรืือ Taq polymerase

5. การวิิเคราะห์์ผลผลิิตของ PCR 
(PCR product analysis)

- การตรวจสอบเบื้้�องต้้น: วิิเคราะห์์ด้้วย gel electrophoresis เพื่่�อดูู DNA smear
- การเตรีียมไลบรารีี: ทำ clean-up และตรวจสอบปริิมาณ/คุุณภาพ (Qubit) ก่่อนทำ NGS library
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ภาพที่่� 12 หลัักการของเทคนิิค SISPA (Chrzastek et al., 2017)

การประยุุกต์์ใช้้ SISPA สำหรัับงานวิิจััยและงานตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััส 

	 SISPA เป็็นเทคนิิคนี้้�ที่่�มีีความเหมาะสมอย่่างยิ่่�งสำหรัับการวิิเคราะห์์ตััวอย่่างที่่�สารพัันธุุกรรมเป้้าหมายมีีปริิมาณ

จำกััดหรืือไม่่ทราบลำดัับนิิวคลีีโอไทด์์ จึึงมีีการนำเทคนิิค SISPA ไปประยุุกต์์ใช้้ร่่วมกัับเทคนิิค Nanopore sequencing 

รวมถึึงเทคนิิค NGS อื่่�น ๆ อย่่างกว้้างขวางในงานวิิจััยและงานตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััส ดัังนี้้�

	 1.	 ใช้้เพื่่�อการค้้นพบและจำแนกชนิิดเชื้้�อไวรััสก่่อโรคใหม่่ (viral discovery and identification)

	 	 SISPA เหมาะสำหรัับการค้้นหาไวรััสชนิิดใหม่่ท่ี่�ยัังไม่่เคยมีีในฐานข้้อมููล ซ่ึ่�งใช้้ไพรเมอร์์แบบสุ่่�มท่ี่�มีีแท็็ก ท ำให้้

สามารถเพิ่่�มปริิมาณสารพัันธุุกรรมของไวรััสทั้้�ง DNA และ RNA ได้้โดยไม่่ต้้องอาศััยข้้อมููลลำดัับนิิวคลีีโอไทด์์ของไวรััส 

เป้้าหมาย SISPA product ที่่�ได้้จึึงสามารถนำไปหาลำดัับนิิวคลีีโอไทด์์และนำไปเปรีียบเทีียบกัับ genome database 

เช่น่ GenBank จึึงมีีประสิทิธิภิาพสูงูในการระบุชุนิดิไวรัสั หรืือแม้ก้ระทั่่�งไวรัสัที่่�ไม่เ่คยถูกูค้น้พบมาก่อ่น (Reyes and Kim, 

1991; Chrzastek et al., 2017)

	 2.	 ใช้้เพื่่�อการศึึกษาความหลากหลายทางพัันธุุกรรม (genetic diversity study)

	 	 เนื่่�องจาก SISPA สามารถเพิ่่�มลำดัับพัันธุุกรรมจากหลายตำแหน่่งทั่่�วทั้้�งจีีโนมพร้้อมกััน เทคนิิคนี้้�จึึงเหมาะสม

สำหรัับการวิิเคราะห์์ความหลากหลายของไวรััสหรืือการจำแนกสายพัันธุ์์�ย่่อยของเชื้้�อไวรััสก่่อโรคชนิิดเดีียวกััน ไพรเมอร์์

แบบสุ่่�มช่่วยให้้สามารถเข้้าถึึงลำดัับเบสที่่�ครอบคลุุมทั้้�งจีีโนมมากกว่่าการทำ PCR แบบจำเพาะเจาะจง ซึ่่�งเป็็นประโยชน์์

ต่่อการประกอบจีีโนมทั้้�งหมด (genome assembly) โดยเฉพาะไวรััสที่่�มีีจีีโนมแบ่่งเป็็นหลายส่่วน (segmented 

genomes) นอกจากนี้้� การใช้้ SISPA กัับตััวอย่่างที่่�มีีความซัับซ้้อน เช่่น ตััวอย่่างสิ่่�งแวดล้้อมหรืือตััวอย่่างทางคลิินิิกที่่�มีี

จุุลิินทรีีย์์หลายชนิิด การช่่วยเพิ่่�มปริิมาณสารพัันธุุกรรมทั้้�งหมดอย่่างไม่่จำเพาะ ทำให้้สามารถวิิเคราะห์์องค์์ประกอบและ

ความหลากหลายทางสายพัันธุ์์�ของไวรััส (virome) ได้้อย่่างแม่่นยำ (Chrzastek et al., 2017)

	 3.	 ใช้เ้พื่่�อการเพิ่่�มปริมาณสารพัันธุกุรรมทั้้�งหมดจากตัวัอย่่างปริมาณน้อ้ย (whole genome amplification from 

limited samples)

	 	 SISPA เป็็นเครื่่�องมืือสำคััญสำหรัับการเพิ่่�มปริมาณจีีโนมทั้้�งหมด (whole genome amplification; WGA)  

จากตััวอย่่างที่่�มีีปริิมาณ template ต่่ำมาก เทคนิิคนี้้�เหมาะสำหรัับตััวอย่่างทางคลิินิิกที่่�มีีปริิมาณไวรััสต่่ำ หรืือผ่่านการ 

จััดเก็็บที่่�อาจทำให้้สารพัันธุุกรรมบางส่่วนเสื่่�อมสภาพ ความไวในการตรวจจัับสููงของ SISPA ช่่วยให้้สามารถเพิ่่�มปริิมาณ

สารพัันธุกุรรมแม้้มีสีารพัันธุกุรรมเริ่่�มต้น้เพีียง 1 พิโิคกรััม (pg) หรืือน้้อยกว่่า ทำให้้เหมาะสำหรัับงานตรวจวิินิจิฉัยัโรคและ

การค้้นหาไวรััสในตััวอย่่างที่่�ท้้าทาย (Chrzastek et al., 2017; Bahador et al., 2021)
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	 4.	 ใช้้เพื่่�อการเตรีียมตััวอย่่างสำหรัับการหาลำดัับนิิวคลีีโอไทด์์ยุุคใหม่่ด้้วยเทคนิิค NGS และ TGS

	 	 SISPA มีีบทบาทสำคััญในการเตรีียมตััวอย่่างสำหรัับเทคโนโลยีี NGS และ TGS ซึ่่�งการรวม SISPA เข้้ากัับ NGS 

เช่่น Illumina หรืือ TGS เช่่น Nanopore เป็็นวิิธีีที่่�เหมาะสมสำหรัับการระบุุไวรััสที่่�ไม่่รู้้�จักมาก่่อน เทคนิิคนี้้�ช่่วยเพิ่่�ม

ปริิมาณสารพัันธุุกรรมของไวรััสให้้เพีียงพอต่่อการสร้้างไลบรารีี  ในขณะท่ี่�ลดสััดส่่วนของสารพัันธุุกรรมพื้�นหลััง 

(background) ที่่�ไม่่ต้้องการ นอกจากนี้้�การพััฒนาบางรููปแบบ เช่่น ligation-free SISPA (LF-SISPA) ช่่วยให้้สามารถต่่อ

อะแดปเตอร์แ์ละบาร์โ์ค้ด้สำหรับั NGS โดยตรง ลดขั้้�นตอนที่่�ซับัซ้้อนและลดต้น้ทุุนการเตรีียมไลบรารีี (Chrzastek et al., 

2017)

ข้้อดีีและข้้อจำกััดของ SISPA

	 SISPA เป็น็เทคนิคิที่่�มีีศักัยภาพสูงูสำหรับัการเพิ่่�มปริมิาณสารพันัธุกุรรมที่่�ไม่ท่ราบลำดับันิวิคลีีโอไทด์แ์ละมีีปริมิาณ

จำกััด อย่่างไรก็็ตาม เทคนิิคนี้้�ยัังมีีข้้อจำกััดที่่�นัักวิิจััยควรตระหนััก โดยเฉพาะเมื่่�อใช้้ร่่วมกัับการหาลำดัับนิิวคลีีโอไทด์์ด้้วย 

Nanopore sequencing

	 1.	ข้ ้อดีี 

	 	 SISPA เป็น็ที่่�ยอมรับอย่า่งกว้้างขวางในงานไวรััสวิทิยาและเมทาจีีโนมิิกส์์ เนื่่�องจากมีีคุณุสมบัติิเด่น่สามประการ 

ประการแรกคืือความสามารถในการเพิ่่�มปริิมาณสารพัันธุุกรรมที่่�ไม่่ทราบเป้้าหมาย SISPA สามารถเพิ่่�มปริิมาณจีีโนม

ทั้้�งหมด (whole genome amplification) ของไวรััสในตััวอย่่างได้้โดยไม่่ต้้องทราบข้้อมููลลำดัับนิิวคลีีโอไทด์์ซ่ึ่�งเป็็น 

สิ่่�งสำคััญต่่อการค้้นพบเชื้้�อก่่อโรคอุุบััติิใหม่่และการศึึกษาความหลากหลายทางชีีวภาพ ประการที่่�สองคืือไม่่ต้้องออกแบบ

ไพรเมอร์์เฉพาะเจาะจง  เนื่่�องจากใช้้ chimeric single primer ที่่�ประกอบด้้วยส่่วนแท็็กที่่�ทราบลำดัับนิิวคลีีโอไทด์์และ

ส่่วน random oligomer จึึ งช่่วยลดเวลาและขั้้�นตอนในการออกแบบและตรวจสอบไพรเมอร์์เฉพาะเป้้าหมาย (Reyes 

and Kim, 1991) ป ระการที่่�สามคืือความไวสููง SISPA สามารถเพิ่่�มสารพัันธุุกรรมจากปริิมาณเริ่่�มต้้นน้้อยมาก เช่่น  

ในระดัับพิิโคกรััม (pg) ทำให้้เหมาะสมสำหรัับตััวอย่่างทางคลิินิิกหรืือสิ่่�งแวดล้้อมที่่�มีีปริิมาณไวรััสต่่ำ

	 2.	ข้ ้อจำกััด 

	 	 แม้้ SISPA จะมีีข้อดีีหลายประการ แต่่ก็็มีีข้้อจำกััดหลายประการ ข้ อจำกััดแรกคืือความเสี่่�ยงของการ 

เพิ่่�มปริมาณสารพัันธุุกรรมที่่�ไม่่เกี่่�ยวข้้อง (nonspecific amplification risk) เนื่่�องจากไพรเมอร์์สุ่่�มสามารถจัับกัับสาย 

นิวิคลีีโอไทด์ข์องจีีโนมของสิ่่�งมีีชีีวิติอื่่�น ๆ  ได้ ้ทำให้้เกิดิการเพิ่่�มปริมาณสารพันัธุกุรรมของเจ้า้บ้า้น (host DNA/RNA) หรืือ

จุุลิินทรีีย์์ที่่�ไม่่ใช่่เป้้าหมาย ซึ่่�งอาจลดจำนวน sequence read ของไวรััสเป้้าหมายในการหาลำดัับนิิวคลีีโอไทด์์ด้้วย 

Nanopore sequencing ข้้อจำกััดที่่�สองคืือปััญหาการปนเปื้้�อน (contamination issues) ความไวสููงของ SISPA ทำให้้

สามารถเพิ่่�มปริิมาณสารพัันธุุกรรมท่ี่�ปนเปื้้�อนมาจากสภาพแวดล้้อม น้้ ำยา หรืือรีีเอเจนต์์ที่่�ใช้้ในการสกััดและ PCR เช่่น 

สารพันัธุกุรรมของพลาสมิดิหรืือสารพันัธุกุรรมของ rRNA จากชุดุน้้ำยา cDNA synthesis kit ซึ่่�งอาจทำให้เ้กิดิผลบวกลวง 

(false-positive results) ข้ ้อจำกััดสุุดท้้ายคืือความซัับซ้้อนของการวิิเคราะห์์ข้้อมููล (complexity of data analysis)  

SISPA product จะเป็็น heterogeneous library ที่่�ครอบคลุุมจีีโนมไม่่สม่่ำเสมอและมีี bias ที่่�เกี่่�ยวข้้องกัับโครงสร้้าง

แท็ก็ของไพรเมอร์์ นักัวิจิัยัจึึงต้้องใช้เ้ครื่่�องมืือชีีวสารสนเทศซับซ้อ้นในการจััดการข้้อมูลูจำนวนมาก เพื่่�อลบลำดัับแท็็กที่่�ไม่่

เกี่่�ยวข้้องและประกอบจีีโนมให้้สมบููรณ์์  (Bahador et al., 2021 Haagmans et al., 2025)
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	 เทคนิิค probe-based hybridization capture ได้้กลายเป็็น 

เครื่่�องมืือสำคััญในการเตรีียมตััวอย่่างสำหรัับ NGS เพื่่�อการตรวจวิินิิจฉััยโรค

ทางไวรััส โดยเฉพาะอย่่างยิ่่�งในกรณีีที่่�ปริมาณสารพัันธุุกรรมของไวรััสใน

ตััวอย่่างมีีน้้อยมากหรืือมีีสารพัันธุุกรรมของโฮสต์์ (host background)  

ปนเปื้้�อนสูงู ในตัวัอย่า่งทางคลิินิกิสารพัันธุุกรรมของไวรััสมักัมีีสัดัส่ว่นต่่ำมาก

เมื่่�อเทีียบกัับสารพัันธุุกรรมของโฮสต์์ หรืือน้้อยกว่่า 1% ของสารพัันธุุกรรม

ทั้้�งหมดในตััวอย่่าง ท ำให้้การตรวจหาลำดัับนิิวคลีีโอไทด์์ของไวรััสมัักได้้

จำนวน sequence read น้ อยไม่่เพีียงพอต่่อการวิิเคราะห์์และแปลผลได้้

ชััดเจน เทคนิคิ hybridization capture ที่่�ใช้้ biotinylated probes จัับกัับ

สายนิิวคลีีโอไทด์เป้้าหมายของไวรััส และตามด้วยการดึึงแยกสาย 

นิิวคลีีโอไทด์์ของไวรััส ด้ ้วย streptavidin-coated magnetic beads  

จึึงสามารถเพิ่่�มความเข้้มข้้นของสารพัันธุุกรรมไวรััสได้้หลายร้้อยถึึงหลาย 

พัันเท่่า (Wylie et al., 2015; Gaudin and Desnues, 2018) ซ่ึ่�ง

กระบวนการนี้้�เรีียกว่่า target enrichment ซึ่่�งช่่วยเพิ่่�มความเข้้มข้้น 

ของสารพัันธุุกรรมของไวรััสเป้้าหมายได้้อย่่างมีีประสิิทธิิภาพหลายร้้อยถึึง

หลายพัันเท่่า ท ำให้้สามารถหาลำดัับนิิวคลีีโอไทด์์ของไวรััสได้้ลึึกยิ่่�งขึ้้�น 

(deep sequencing) ซึ่่�งเป็็นประโยชน์์อย่่างยิ่่�งในการเฝ้้าระวัังการระบาด

ของไวรััส การค้้นพบไวรััสสายพัันธุ์์�ใหม่่ การวิิเคราะห์์ไวโรม  (virome 

analys is)  และการศึึกษาการกลายพัันธุ์์�ของไวรััสในระดัับจีี โนม  

(Wylie et al., 2015)

เทคนิิคการตรวจจัับและ 
เพ่ิ่�มปริิมาณสารพันธุุกรรม 
ของไวรััสด้้วยวิิธีี probe-based 
hybridization capture

บทที่่� 5



37

คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

หลัักการออกแบบโพรบสำหรัับ hybridization capture  

	

	 การออกแบบโพรบ เพื่่�อใช้้ในการเพิ่่�มความเข้้มข้้นของสายนิิวคลีีโอไทด์์ของไวรััสสำหรัับการหาลำดัับนิิวคลีีโอไทด์์

ด้้วย Nanopore sequencing ต้ ้องคำนึึงถึึงประสิิทธิิภาพและความแม่่นยำในการจัับเป้้าหมายจากตััวอย่่างท่ี่�มีีความ 

ซัับซ้้อนสููง (Mamanova et al., 2010; Briese et al., 2015; Wylie et al., 2015) ดัังนี้้�

	 1.	 การครอบคลุุมเป้้าหมาย (target tiling and redundancy) โพรบจะถููกออกแบบให้้วางซ้้อนกััน (overlap) 

และเรีียงตัวัเป็็นแนว (tile) ครอบคลุมุจีีโนมไวรัสัเป้้าหมายทั้้�งหมด เพื่่�อให้้แน่่ใจว่่าแต่่ละชิ้้�นส่่วนของจีีโนมไวรัสัจะถูกูจับัได้้ 

	 2.	 การรองรัับการกลายพัันธุ์์�  (mismatch tolerance) โพรบมัักถููกออกแบบให้้มีีความยาวเหมาะสม  เพื่่�อให้้

สามารถจัับลำดัับนิิวคลีีโอไทด์์เป้้าหมายได้้แม้้จะมีีจุุดกลายพัันธุ์์�เล็็กน้้อย (mismatches) ซึ่่�งสำคััญสำหรัับไวรััสที่่�มีีการ

เปลี่่�ยนแปลงของจีีโนมอย่่างรวดเร็็ว 

	 3.	 การควบคุุมค่่า Tm ในชุุดโพรบ จำเป็็นต้้องมีีการควบคุุมค่่า Tm ให้้มีีค่่าใกล้้เคีียงกัันท่ี่�สุุด เพื่่�อให้้ทุุกโพรบมีี

ประสิิทธิิภาพในการ hybridization ที่่�สภาวะเดีียวกััน 

	 4.	 การติิดฉลาก biotin  โพรบทั้้�งหมดจะถููกติิดฉลากด้้วย biotin ที่่�ปลาย 5′ (หรืือ 3′) เพื่่�อใช้้สำหรัับการดึึงแยก

สายนิวิคลีีโอไทด์์ของไวรััสด้้วย streptavidin-coated magnetic beads ในภายหลังั กระบวนการนี้้�เป็็นหััวใจสำคัญัของ

กลไกการคััดเลืือกเป้้าหมาย (target selection) 

หลัักการของเทคนิิค probe-based hybridization capture 

	 เทคนิิค hybridization capture หรืือ target enrichment เป็น็วิิธีีที่่�ช่่วยเพิ่่�มความเข้ม้ข้นของลำดัับสารพัันธุุกรรม

ของไวรััสที่่�สนใจ ก่ ่อนนำไปตรวจหาลำดัับนิิวคลีีโอไทด์์ด้้วย Nanopore sequencing โดยมีีกระบวนการประกอบด้้วย 

ขั้้�นตอนหลััก ๆ (ภาพที่่� 13)  (Mamanova et al., 2010; Wylie et al., 2015) ดัังนี้้�

	 1.	 การเตรีียมไลบรารีี (library preparation) สารพันัธุกุรรมของไวรัสัและโฮสต์ท์ี่่�สกัดัได้จ้ะถูกูตััดให้เ้ป็น็ชิ้้�นเล็ก็ ๆ  

(fragmentation) แล้้วทำการเชื่่�อมต่่อด้้วยโมเลกุุล adaptors ที่่�ปลายทั้้�งสองด้้านเพื่่�อสร้้างไลบรารีี ทั่่�วไป หรืืออาจมีีการ

ใช้้เทคนิิค SISPA เพื่่�อเพิ่่�มปริิมาณสารพัันธุุกรรม

	 2.	 การผสมกันของโพรบและเป้้าหมาย (hybridization) นำไลบรารีีหรืือสารพัันธุุกรรมที่่�ถููกเพิ่่�มปริมาณมาผสมกับ

ชุุดโพรบที่่�สัังเคราะห์์ขึ้้�น ซึ่่�งโพรบเหล่่านี้้�เป็็น oligonucleotide สายเดี่่�ยวที่่�ติิดฉลาก biotin ไว้้ และมีีลำดัับนิิวคลีีโอไทด์์

ที่่�เป็็นคู่่�สมกัับลำดัับนิิวคลีีโอไทด์์ของจีีโนมไวรััสท่ี่�ต้้องการ (target viral sequences) เพื่่�อให้้โพรบจัับกัับลำดัับ 

นิิวคลีีโอไทด์์เป้้าหมายอย่่างจำเพาะเจาะจงเท่่านั้้�น

	 3.	 การดึึงแยก (capture) โมเลกุุลโพรบท่ี่�จัับกัับสายนิิวคลีีโอไทด์ของไวรััสเป้้าหมายจะถููกดึึงแยกออกจาก

สารละลายโดยใช้้ streptavidin-coated magnetic beads เนื่่�องจาก biotin บนโพรบมีีความจำเพาะสููงต่่อโปรตีีน 

streptavidin (biotin-streptavidin affinity) จากนั้้�นจึึงนำไปล้้าง (washing) เพื่่�อกำจััดสารพัันธุุกรรมของโฮสต์์ที่่�ไม่่ได้้

จัับออกไป

	 4.	 การเพิ่่�มปริิมาณหลัังการดึึงแยก (post-capture amplification) สายนิิวคลีีโอไทด์์ของไวรััสที่่�ถููกดึึงแยกและ

ติิดอยู่่�กัับ beads จะถููกชะออกมา (elution) และนำไปเพิ่่�มปริิมาณด้้วยเทคนิิค PCR โดยใช้้ไพรเมอร์์ที่่�จัับกัับ adaptors 

ที่่�ติดิไว้ก่้่อนหน้า้ และทำให้บ้ริสิุทุธิ์์�จะได้ส้ารพันัธุกุรรมของไวรัสัเป้า้หมายที่่�พร้อ้มสำหรับันำไปหาลำดับันิวิคลีีโอไทด์ต์่อ่ไป 



38

คู่่�มืือ เทคนิิค sequence-independent single-primer amplification (SISPA)                                                                                                                                                                     ร่่วมกัับ Nanopore sequencing เพ่ื่� อการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสในสัตว์์

ภาพที่่� 13 หลัักการของ probe-based hybridization capture (Miyazato et al., 2016)

ตารางที่่� 8 การเปรีียบเทีียบ viral probe hybridization กัับเทคนิิค enrichment อื่่�น ๆ

รููปแบบเทคนิิค หลัักการ
ความไว 

(Sensitivity)
ความจำเพาะ 
(Specificity)

การครอบคลุุมจีีโนม ข้้อจำกััด/ความท้้าทาย

viral probe hybridization 
(VPH) (Wylie et al., 2015; 
Gaudin & Desnues, 2018)

ใช้้สายโพรบจำเพาะ 
จัับกัับลำดัับนิิวคลีีโอไทด์์
เป้้าหมายของไวรััส  
จากนั้้�นแยกสาร 
พัันธุุกรรมที่่�จัับได้้

สููง: สามารถจัับ
ไวรััสปริิมาณ 

ต่่ำได้้

สููง: โพรบออกแบบ
เฉพาะ ทำให้้ลด 
background  
ของ host

ขึ้้�นอยู่่�กัับจำนวนและ 
การออกแบบตำแหน่่ง 
ให้้โพรบ สามารถ
ครอบคลุุมจีีโนม 
หลััก ๆ ได้้

ค่่าใช้้จ่่ายสููง, ต้้องออกแบบ 
โพรบอย่่างระมััดระวััง,  
อาจพลาดไวรััส 
สายพัันธุ์์�ใหม่่ที่่�ต่่างจากโพรบ

PCR-based enrichment 
(Briese et al., 2015)

ใช้้ primer จำเพาะ 
เพื่่�อเพิ่่�มปริิมาณสาร
พัันธุุกรรมของไวรััส

สููงในบริิเวณ 
ที่่� primer 
ครอบคลุุม

สููงสำหรัับ 
สายพัันธุ์์�ที่่� primer 

จัับได้้

จำกััดบริิเวณที่่�  
primer ออกแบบไว้้,  
ไม่่ครอบคลุุมทั้้�งจีีโนม

sensitive ต่่อ mutations 
ในบริิเวณ primer binding 
site, multiplexing มีีข้้อ
จำกััดจำนวน target

random amplification / 
SISPA (Smits et al., 2013)

เพิ่่�มปริิมาณสาร 
พัันธุุกรรมทั้้�งหมดใน
ตััวอย่่าง โดยไม่่จำเพาะ

ปานกลาง-สููง ต่่ำ: background 
host DNA/RNA  

มาก

สามารถครอบคลุุม 
ทั้้�งจีีโนม

ไม่่จำเพาะ, ต้้องการ 
sequencing depth สููง, 
background มาก

capture by CRISPR/Cas 
systems (Lopatriello et al., 
2023)

ใช้้ gRNA นำ Cas9 ตััดและ 
enrich สายนิิวคลีีโอไทด์์
บริิเวณเป้้าหมาย

สููง สููง,  
ขึ้้�นอยู่่�กัับ gRNA

ครอบคลุุมได้้ตาม 
จำนวน gRNA

ต้้องออกแบบ gRNA หลาย
ตััว, เทคนิิคซัับซ้้อน, ยัังไม่่
แพร่่หลายเชิิงพาณิิชย์์

physical/chemical 
depletion of host DNA/
RNA (Sajib et al., 2024) 

ลดสารพัันธุุกรรมของ host 
เพื่่�อลด background

ขึ้้�นอยู่่�กัับ 
ปริิมาณไวรััส

ปานกลาง สามารถเพิ่่�ม coverage 
ของลำดัับนิิวคลีีโอไทด์์
ของไวรััสได้้โดย 
ไม่่จำเพาะ

ไม่่สามารถเลืือกสายพัันธุ์์�
เฉพาะ, ไม่่ได้้เพิ่่�มปริิมาณ 
ไวรััสโดยตรง

ปััจจััยที่่�มีีผลต่่อประสิิทธิิภาพของ viral probe hybridization มีีดัังนี้้�

	 1.	 ความจำเพาะและความไวของโพรบ (probe specificity and sensitivity) 

	 	 ความจำเพาะของโพรบขึ้้�นอยู่่�กับความสามารถของโพรบในการจัับกัับลำดัับนิิวคลีีโอไทด์เป้้าหมายโดยไม่่เกิิด

การจัับกัับลำดัับนิิวคลีีโอไทด์ของโฮสต์์หรืือจุุลิินทรีีย์อื่่�น ๆ การออกแบบโพรบที่่�เหมาะสมจำเป็็นต้้องตรวจสอบกัับ 

ฐานข้้อมููลจีีโนมของโฮสต์์และเชื้้�ออื่่�น ๆ เพื่่�อลดการเกิิด cross-hybridization หากความจำเพาะต่่ำจะส่่งผลให้้เกิิด

สััญญาณรบกวน (background noise) สููงและทำให้้การวิิเคราะห์์หาลำดัับนิิวคลีีโอไทด์์ไม่่แม่่นยำ (Ceballos-Garzon 

et al., 2024) ส่่วนความไวของโพรบขึ้้�นอยู่่�กัับความสามารถของโพรบในการตรวจจัับสารพัันธุุกรรมของไวรััสที่่�มีีปริิมาณ

ต่่ำ โดยการใช้้ปริิมาณโพรบที่่�เพีียงพอและการจัับของโพรบที่่�มีีความเสถีียร (stable hybridization) จะช่่วยเพิ่่�มสััดส่่วน
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ของลำดัับนิิวคลีีโอไทด์์ของไวรััสเมื่่�อเทีียบกัับลำดัับนิิวคลีีโอไทด์์ของโฮสต์์ อีีกทั้้�งการใช้้ probe tiling หรืือการออกแบบ

โพรบหลายตััวซ้้อนทัับในบริิเวณเดีียวกัันยัังสามารถเพิ่่�มความไวและครอบคลุุมสายพัันธุ์์�ที่่�มีีการกลายพัันธุ์์�ได้้ (Kuchinski 

et al., 2022)

	 2.	 ความยาวและความเข้้มข้้นของโพรบ (probe length and concentration) 

	 	 ความยาวและความเข้้มข้้นของโพรบ เป็็นปััจจััยหนึ่่�งที่่�กำหนดประสิิทธิิภาพของการ hybridization โดยโพรบ

ที่่�มีีขนาดสั้้�นเกิินไป  (<30 bp) อาจไม่่จำเพาะและมีีโอกาสเกิิดการจัับผิิดเป้้าหมายได้้ง่่าย ในขณะที่่�โพรบที่่�มีีขนาดยาว 

เกิินไป (>150 bp) แม้้จะเพิ่่�มความจำเพาะ แต่่กลัับลดประสิิทธิิภาพการจัับและอาจเกิิดโครงสร้้างทุุติิยภููมิิ (secondary 

structure) โดยทั่่�วไปโพรบที่่�มีีความยาว 50–120 นิ วคลีีโอไทด์ถืือว่่าเหมาะสมสำหรัับการทำ hybridization-based 

enrichment ส่ วนความเข้้มข้้นของโพรบที่่�ต่่ำเกิินไปจะไม่่เพีียงพอต่่อการจัับไวรััสท่ี่�มีีปริมาณน้้อย ในทางตรงกัันข้้าม  

หากสููงเกิินไปอาจเพิ่่�มการจัับที่่�ไม่่จำเพาะ (nonspecific binding) และเพิ่่�มค่า่ background ดังนั้้�นปริมาณโพรบที่่�ใช้ค้วร

สััมพัันธ์์กัับอััตราส่่วนของไวรััสเป้้าหมายและขนาดจีีโนมของไวรััสที่่�ต้้องการหาลำดัับนิิวคลีีโอไทด์ (Öhrmalm et al., 

2010; Munyuza et al., 2022)

	 3.	 อััตราส่่วนระหว่่างสารพัันธุุกรรมไวรััสกัับโพรบ (ratio of viral nucleic acids to probes) 

	 	 อััตราส่่วนระหว่่างสารพัันธุุกรรมไวรััสกัับโพรบมีีผลต่่อประสิิทธิิภาพของ hybridization   โดยปริมาณลำดัับ 

นิิวคลีีโอไทด์์ของไวรััสต่่ำเกิินไปเมื่่�อเทีียบกัับปริิมาณลำดัับนิิวคลีีโอไทด์์ของโฮสต์์ จะต้้องมีีโพรบท่ี่�มีีปริมาณมากพอให้้

สามารถจัับกัับลำดัับนิิวคลีีโอไทด์์ของไวรััสได้้ครอบคลุุมทั้้�งหมดในทางตรงกัันข้้าม  หากมีีโพรบมากเกิินไปเมื่่�อเทีียบกัับ

ปริิมาณลำดัับนิิวคลีีโอไทด์์ของไวรััสอาจเพิ่่�ม  background noise และทำให้้การวิิเคราะห์์ข้้อมููลลำดัับนิิวคลีีโอไทด์์ของ

ไวรััสและแปลผลผิิดพลาดได้้ ดั ังนั้้�นการหาอััตราส่่วนระหว่่างสารพัันธุุกรรมไวรััสกัับโพรบที่่�เหมาะสมจึึงมีีความสำคััญ

อย่่างยิ่่�งต่่อทั้้�งประสิิทธิิภาพการจัับและคุุณภาพของข้้อมููล sequencing ที่่�ได้้ (Paskey et al., 2019; Jia et al., 2024)

ประโยชน์์ของ viral probe hybridization ต่่อการหาลำดัับนิิวคลีีโอไทด์์ในการตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััส

	 1.	 ความสามารถในการเพิ่่�มความไว (high sensitivity): เทคนิิคนี้้�ช่่วยเพิ่่�มสัดส่่วนของ viral reads ต่ ่อ total 

reads ที่่�ได้้จากการหาลำดัับนิิวคลีีโอไทด์ได้้อย่่างมาก ท ำให้้สามารถตรวจพบไวรััสในตััวอย่่างที่่�มีีปริิมาณน้้อย (<1%)  

ซึ่่�งเป็็นปััญหาหลัักของตััวอย่่างทางคลิินิิก (Gaudin and Desnues, 2018) 

	 2.	 ความทนต่่อการไม่่จัับคู่่�ของนิิวคลีีโอไทด์์ (tolerance to mismatches): เนื่่�องจากโพรบที่่�ใช้้มีีความยาว  

(เช่่น 80–120 bp) จึึ งสามารถทนต่่อการไม่่จัับคู่่�ของนิิวคลีีโอไทด์์เบสบางส่่วนของจีีโนมไวรััสได้้ดีีกว่่าวิิธีี  amplicon-

based ที่่�ต้้องอาศััย primer ที่่�สั้้�นกว่่า ทำให้้เหมาะสำหรัับการตรวจจัับไวรััสที่่�มีีความแปรผัันทางพัันธุุกรรมสููง (Briese 

et al., 2015)

ข้้อดีีและข้้อจำกััดของวิิธีี viral probe hybridization

	 วิิธีี viral probe hybridization นิิยมใช้้ในงานตรวจวิินิิจฉััยและการเฝ้้าระวัังเชื้้�อไวรััส โดยมีีข้้อดีีสำคััญคืือการเพิ่่�ม

ความไวของการตรวจหาสารพัันธุุกรรมไวรััส เนื่่�องจากโพรบสามารถเพิ่่�มสััดส่่วนของสารพัันธุุกรรมไวรััสให้้สููงขึ้้�นเมื่่�อ 

เทีียบกัับ host nucleic acids ทำให้้สามารถตรวจจัับไวรััสที่่�มีีปริิมาณต่่ำได้้ดีียิ่่�งขึ้้�น (Paskey et al., 2019) นอกจากนี้้� 

วิิธีีนี้้�ยัังสามารถออกแบบโพรบให้้ครอบคลุุมไวรััสหลายชนิด จึึ งรองรัับการตรวจจัับเชื้้�อไวรััสหลายชนิดที่่�มีีความ 

หลากหลายทางพัันธุุกรรมในเวลาเดีียวกััน ตลอดจนการติิดเชื้้�อร่่วม (co-infection) ได้้อย่่างมีีประสิิทธิิภาพ (Kuchinski 
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et al., 2022) อีีกทั้้�งยัังช่่วยลดปััญหา background ที่่�เกิิดจากสารพัันธุุกรรมของโฮสต์์ ทำให้้การหาลำดัับนิิวคลีีโอไทด์์

ของเชื้้�อไวรััสมีีความแม่่นยำสููงขึ้้�นและลดปริิมาณข้้อมููลลำดัับนิิวคลีีโอไทด์์ที่่�ไม่่จำเป็็นในกระบวนการ sequencing 

(Ceballos-Garzon et al., 2024) อย่่างไรก็็ตาม วิิธีี  viral probe hybridization ก็็มีีข้้อจำกััดที่่�ควรพิิจารณาเช่่นกััน  

หนึ่่�งในข้้อจำกััดหลัักคืือค่่าใช้้จ่่ายท่ี่�สููงทั้้�งในแง่่ของการออกแบบและสัังเคราะห์์โพรบ รวมถึึงการใช้้สารเคมีีและเครื่่�องมืือ

ที่่�มีีความซับซ้้อน (Jia et al., 2024) อีี กทั้้�งการออกแบบโพรบต้้องอาศััยข้้อมููลจีีโนมของไวรััสที่่�มีีอยู่่�ในฐานข้้อมููล  

หากข้อ้มูลูไม่ค่รอบคลุมุหรืือไม่เ่ป็น็ปัจัจุบุันั อาจทำให้โ้พรบไม่ส่ามารถจับักับัสายพันัธุ์์�ที่่�กลายพันัธุ์์�ได้อ้ย่า่งมีีประสิทิธิภิาพ 

มีีผลต่่อ sensitivity ที่่�ลดลง (Öhrmalm et al., 2010) ข้้อจำกััดอีีกประการคืือการตรวจจัับไวรััสสายพัันธุ์์�ใหม่่หรืือไวรััส

ท่ี่�มีคีวามแตกต่า่งสููงจาก reference genome database เนื่่�องจากโพรบไม่ส่ามารถจับัได้้หากมีีความแตกต่า่งของลำดับั

นิิวคลีีโอไทด์์มากเกิินไป ส่่งผลให้้ไวรััสชนิิดใหม่่อาจตรวจไม่่พบ (Ceballos-Garzon et al., 2024)

แนวทางการประยุุกต์์ใช้้ viral probe hybridization มีีดัังนี้้�

	 1.	 เพื่่�อใช้้ในการเฝ้้าระวัังโรคไวรััสในสััตว์์ (viral disease surveillance in animals)

	 	 เทคนิิคนี้้�มีีประโยชน์์อย่่างมากต่่อการเฝ้้าระวัังโรคในปศุุสััตว์์และสััตว์์ป่่า เนื่่�องจากสามารถตรวจจัับไวรััส 

หลายชนิิดในตััวอย่่างเดีียวกััน และมีีความไวสููงเหมาะสำหรัับตััวอย่่างชีีวภาพที่่�มีีปริิมาณไวรััสต่่ำ ซึ่่�งสามารถติิดตามการ

แพร่่กระจายของไวรััส และการตรวจจัับการติิดเชื้้�อแบบร่่วม (co-infections) รวมถึึงการตรวจหาความหลากหลายของ

ไวรััสในสิ่่�งแวดล้้อม (Ceballos-Garzon et al., 2024; Jia et al., 2024)

	 2. 	เพื่่�อใช้้ในการตรวจวิินิิจฉััยโรคอุุบััติิใหม่่ (diagnosis of emerging viruses)

	 	 ในกรณีีที่่�มีีการระบาดของไวรััสอุุบััติิใหม่่ เทคนิิคนี้้�สามารถช่่วยตรวจหาไวรััสที่่�มีีความใกล้้เคีียงกัับไวรััสที่่�ทราบ

ชนิดิแล้ว้ได้ ้แม้ไ้วรััสดัังกล่า่วจะกลายพันัธุ์์�บางตำแหน่ง่ก็ต็าม การใช้ ้probe tiling หรืือ probe panels ที่่�ครอบคลุมุกลุ่่�ม

ไวรััสกว้้าง ๆ (pan-viral probes) สามารถเพิ่่�มโอกาสในการตรวจจัับไวรััสอุุบััติิใหม่่หรืือสายพัันธุ์์�กลายพัันธุ์์�ได้้อย่่างมีี

ประสิิทธิิภาพ (Kuchinski et al., 2022)

	 3. 	เพื่่�อใช้้ในการวิิจััยพัันธุุศาสตร์์เชิิงลึึกของไวรััส (viral genomics research)

	 	 viral probe hybridization ยั ังเป็็นเครื่่�องมืือสำคััญในการศึึกษาพัันธุุศาสตร์์ เชิิงลึึกของไวรััส  

(deep viral genomics) เช่่น การวิิเคราะห์์ความหลากหลายของจีีโนม  การศึึกษาการวิิวััฒนาการของไวรััส และการ

ติิดตามการกลายพัันธุ์์�ที่่�เก่ี่�ยวข้้องกัับความรุนแรงของโรคหรืือการด้ื้�อต่่อวััคซีีน เทคนิิคนี้้�ช่่วยเพิ่่�มคุณภาพของข้้อมููล 

sequencing โดยลด background host DNA และเพิ่่�มความครอบคลุุมของจีีโนมไวรััส ซึ่่�งเอื้้�อต่่อการทำการศึึกษาความ

หลากหลายทางพันัธุกุรรมของไวรัสัในระดับัประชากร (population genomics) และการศึึกษาพลวัตัเชิงิวิวิัฒันาการและ

การแพร่่ระบาดของไวรััส (phylodynamics) (Paskey et al., 2019; Ceballos-Garzon et al., 2024)

การพััฒนาวิิธีีหาลำดัับสารพัันธุุกรรมของไวรััสโดยการประยุุกต์์เทคนิิค viral probe hybridization ร่่วมกัับ  

SISPA - Nanopore Sequencing

	 การบููรณาการเทคนิิค viral probe hybridization เข้้ากัับวิิธีี  sequence-independent single primer 

amplification (SISPA) และ Nanopore sequencing เป็น็แนวทางที่่�มีีศักัยภาพสููงในการเพิ่่�มประสิิทธิภิาพการตรวจจัับ

และการหาลำดัับนิิวคลีีโอไทด์ของไวรััส เนื่่�องจากแต่่ละเทคนิิคสามารถเสริิมข้อจำกััดของกัันและกัันได้้อย่่างลงตััว  

โดยเทคนิิค SISPA มีีจุุดแข็็งในการเพิ่่�มปริมาณสารพัันธุุกรรมของไวรััสโดยไม่่ต้้องอาศััยข้้อมููลลำดัับนิิวคลีีโอไทด์  
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จึึงเหมาะสำหรัับการตรวจหาไวรััสอุุบััติิใหม่่หรืือสายพัันธุ์์�ท่ี่�มีีการกลายพัันธุ์์�สููง (Brinkmann et al., 2021)  

ขณะที่่�เทคโนโลยีี  Nanopore sequencing มีีความสามารถในการอ่่านลำดัับนิิวคลีีโอไทด์ที่่�มีีขนาดยาว (long-read 

sequencing) อีีกทั้้�งยัังให้้ผลลััพธ์์แบบ real-time และเหมาะสำหรัับการใช้้งานในภาคสนาม (Kafetzopoulou et al., 

2019) แต่่ทั้้�งสองวิิธีียัังมีีข้้อจำกััด เช่่น error rate ที่่�ค่่อนข้้างสููงของเทคโนโลยีี Nanopore และการเกิิด amplification 

bias ของ SISPA ซึ่่�งอาจทำให้้ปริมาณสารพัันธุุกรรมของไวรััสในตััวอย่่างไม่่สมดุล การผสมผสานเทคนิิค viral probe 

hybridization จึึ งเข้้ามาเติิมเต็็มด้้วยการเพิ่่�มสััดส่่วนสารพัันธุุกรรมของไวรััส (viral nucleic acid enrichment)  

และลดสััดส่่วนสารพัันธุุกรรมของโฮสต์์ จึึงช่่วยเพิ่่�ม coverage ของจีีโนมไวรััสโดยเฉพาะในตััวอย่่างที่่�มีี  viral load ต่่ำ 

(Faria et al., 2016; Ceballos-Garzon et al., 2024) ได้้ ดัังนั้้�นวิิธีีหาลำดัับนิิวคลีีโอไทด์์ของไวรััส โดยการประยุุกต์์

เทคนิิค viral probe hybridization ร่่วมกัับ SISPA - Nanopore sequencing จึึงเป็็นหนึ่่�งในเครื่่�องมืือของการตรวจ

วิินิิจฉััยไวรััสและการเฝ้้าระวัังเชิิงจีีโนมิิกส์์ที่่�สำคััญในอนาคต
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	 การเตรีียมตัวอย่่างมีีบทบาทสำคััญนอกจากจะช่่วยเพิ่่�มความเข้้มข้้น

และคุุณภาพของกรดนิิวคลีีอิิกของไวรััสเพื่่�อให้้เหมาะสมต่่อการหาลำดัับ 

นิิวคลีีโอไทด์แล้้ว ยั ังเป็็นขั้้�นตอนสำคััญในการลดสััญญาณรบกวนที่่�เกิิดจาก

สารพัันธุกุรรมของโฮสต์์และสิ่่�งมีีชีีวิตอื่่�น ๆ  เช่น่ แบคทีีเรีีย เชื้้�อรา หรืือโปรตีีน

จากเซลล์์ที่่�ไม่่เก่ี่�ยวข้้อง ซึ่่�งอาจขััดขวางการตรวจหาลำดัับนิิวคลีีโอไทด์ของ

ไวรััสได้้ การกำจััดหรืือทำให้้สารพัันธุุกรรมเหล่่านี้้�ลดลงจะสามารถช่่วยเพิ่่�ม

ความไวและความจำเพาะของการตรวจ โดยเฉพาะในกรณีีที่่�ตััวอย่่างมีี

ปริิมาณสารพัันธุุกรรมของไวรััสค่่อนข้้างต่่ำเมื่่�อเทีียบกัับปริิมาณสาร

พัันธุุกรรมของโฮสต์์ เทคนิิคที่่�นิิยมใช้้ในการลดปริมาณสารพัันธุุกรรมของ

โฮสต์์และสิ่่�งปนเปื้้�อน ได้้แก่่ การกรอง (filtration) เพื่่�อกำจััดเศษเซลล์์และ

จุุลิินทรีีย์์ที่่�มีีขนาดใหญ่่กว่่าอนุุภาคไวรััส การย่่อยด้้วยเอนไซม์์ (enzymatic 

digestion) เช่่น nuclease treatment ซ่ึ่�งช่่วยสลายกรดนิิวคลีีอิกอื่่�น ๆ  

ที่่�ไม่่ได้้ห่่อหุ้้�มในแคปซิิดของไวรััส และการใช้้โพรบจำเพาะ (virus-specific 

probes หรืือ hybrid capture) เพื่่�อคััดเลืือกเฉพาะสารพัันธุุกรรมของไวรััส

ในการเพิ่่�มสัดัส่ว่นสารพัันธุกุรรมของไวรััสต่อ่สารพัันธุกุรรมของโฮสต์์ เทคนิิค

เหล่่านี้้�ไม่่เพีียงช่่วยลด background signal แต่่ยัังเพิ่่�มความไวของการตรวจ

หาลำดัับสารพัันธุุกรรมของไวรััสโดยใช้้วิิธีี  SISPA Nanopore sequencing 

ได้้ (Hall et al., 2014; Conceição-Neto et al., 2015)

การเตรีียมตััวอย่่างทางชีีวภาพ
เพื่่�อการหาลำำ�ดัับนิิวคลีีโอไทด์์ 

ด้้วยวิิธีี SISPA Nanopore 
sequencing

บทที่่� 6
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การเก็็บและจััดเก็็บตััวอย่่างเพื่่�อทดสอบสำหรัับ NGS มีีดัังนี้้�

	 1.	 เลืือด (Blood samples)

	 	 เลืือดถืือเป็็นหนึ่่�งในตััวอย่่างหลัักที่่�ใช้้สำหรัับการตรวจหาไวรััส ทั้้�งในรููปแบบของ whole blood, serum และ 

plasma โดย serum เหมาะสมต่่อการตรวจทางซีีรััมวิิทยาเพื่่�อหาภููมิิคุ้้�มกัันต่่อเชื้้�อไวรััส ขณะที่่� plasma มัักเป็็นตััวเลืือก

ที่่�เหมาะสมกว่่าสำหรัับการตรวจหาลำดัับนิิวคลีีโอไทด์์ของไวรััส เนื่่�องจากมีีการปนเปื้้�อนของสารพัันธุุกรรมอื่่�น ๆ  

ที่่�อยู่่�ในเซลล์ ์(cellular nucleic acids) น้อ้ยกว่า่ จึึงทำให้ไ้ด้้ข้้อมูลูลำดับันิิวคลีีโอไทด์ท่์ี่�ได้จ้ากวิธิีี Nanopore sequencing 

มีีคุณภาพ  อีีกทั้้�งการใช้ ้anticoagulant เช่น่ EDTA ซ่ึ่�งมีบีทบาทสำคัญัในการคงสภาพของกรดนิวิคลีีอิกิ โดยเฉพาะ RNA 

ของไวรััสที่่�มีีความไม่่เสถีียร การเก็็บและการรัักษาที่่�อุุณหภููมิิต่่ำ เช่่น การแช่่แข็็งที่่� -70°C เป็็นสิ่่�งจำเป็็นในการป้้องกัันการ

สลายตัวัของสารพัันธุกุรรมของไวรััส เพื่่�อให้ไ้ด้ข้้อ้มูลูที่่�มีีคุณุภาพสำหรัับการหาลำดัับนิวิคลีีโอไทด์ (Damen et al., 1998; 

Shi et al., 2016)

	 2.	น้้ ำลาย (saliva samples)

	 	 น้้ำลายจััดเป็็น non-invasive specimen ที่่�สะดวกและปลอดภััยต่่อการเก็็บตััวอย่่าง การเก็็บตััวอย่่างน้้ำลาย

เหมาะสำหรัับไวรััสที่่�ถููกขัับออกมาทางทางเดิินหายใจหรืือต่่อมน้้ำลาย เช่่น ไวรััสโคโรนา การประยุุกต์์ใช้้ SISPA-

Nanopore sequencing กัับน้้ำลายมีีความท้้าทายสำคััญ คืือ เอนไซม์์ที่่�ย่่อย RNA และ microbiota ในตััวอย่่างซึ่่�งทำให้้

เกิิดการเร่่งกระบวนการเสื่่�อมสลายของสารพัันธุุกรรมของไวรััสได้้ ดัังนั้้�นจึึงมีีความจำเป็็นต้้องใช้้ RNase inhibitors หรืือ

สารกันัเสีียเฉพาะเพื่่�อรักัษาความเสถีียรของ RNA นอกจากนี้้�การเก็บ็ตัวัอย่า่งที่่�อุุณหภูมูิติ่่ำยังัสามารถช่่วยเพิ่่�มความไวของ

วิิธีี SISPA-Nanopore sequencing ในการตรวจหาลำดัับนิิวคลีีโอไทด์์ของไวรััสจากน้้ำลายได้้ (To et al., 2019; Wyllie 

et al., 2020)   

	 3.	 เนื้้�อเยื่่�อ (Tissue samples)

	 	 ตััวอย่่างเน้ื้�อเยื่่�อจากอวััยวะเป้้าหมายของไวรััส เช่่น สมอง ป อด หรืือต่่อมน้้ำเหลืือง เป็็นอวััยวะเป้้าหมาย

โดยตรงของไวรััสและมัักถููกใช้้ในการยืืนยัันการติิดเชื้้�อในสััตว์์ที่่�ตายหรืือมีีอาการรุุนแรง โดยตััวอย่่างเนื้้�อเยื่่�อจากอวััยวะ

เหล่่านี้้�มีีความเหมาะสมต่่อการวิิเคราะห์์ด้้วย SISPA-Nanopore sequencing เนื่่�องจากมีีปริิมาณ viral nucleic acids 

ที่่�สูงูเมื่่�อเทีียบกัับตัวัอย่า่งชนิดิอื่่�น อย่า่งไรก็ต็าม การจััดการตัวัอย่่างมีคีวามสำคัญัยิ่่�ง โดยต้อ้งเก็็บในสภาวะปลอดเชื้้�อ และ

หากใช้้สำหรัับการตรวจทางชีีวโมเลกุุลควรเก็็บที่่� -70°C เพื่่�อคงคุุณภาพของกรดนิิวคลีีอิิก (Shi et al., 2006) การเก็็บ

รัักษาตััวอย่่างที่่�ถููกต้้องจะสามารถลดการเสื่่�อมสลายของ viral RNA/DNA และช่่วยให้้ได้้ข้้อมููลลำดัับนิิวคลีีโอไทด์์ที่่�เป็็น 

long-read จาก SISPA-Nanopore sequencing สำหรัับวิิเคราะห์์ที่่�มีีคุณุภาพสููง เพีียงพอและเหมาะสมต่อการประกอบ

จีีโนมไวรััส 

	 4. 	น้้ำทิ้้�ง/สิ่่�งแวดล้้อม (wastewater and environmental samples)

	 	 ตััวอย่่างน้้ำทิ้้�งและตััวอย่่างสิ่่�งแวดล้้อมถููกนำมาใช้้ในแนวทาง wastewater-based epidemiology (WBE) 

สำหรับัการเฝ้า้ระวัังไวรััสในระดัับชุมุชนหรืือฟาร์์มเลี้้�ยงสัตัว์ ์เนื่่�องจากสามารถบ่่งชี้้�การแพร่่ระบาดของไวรััสได้แ้ม้ผู้้้�ติดิเช้ื้�อ

ไม่่มีีอาการ การตรวจหาลำดัับนิวิคลีีโอไทด์ของไวรััสในน้้ำทิ้้�งด้้วย SISPA-Nanopore sequencing ต้องอาศััยกระบวนการ

เพิ่่�มความเข้้มข้้นของไวรััส เช่่น ultrafiltration, polyethylene glycol (PEG) precipitation หรืือ electronegative 

membrane filtration เพื่่�อลดปริมาณสารพัันธุุกรรมจากโฮสต์์และจุุลิินทรีีย์ และเพิ่่�มความไวของวิิธีีจึึงจะสามารถ

วิิเคราะห์์โครงสร้้างจีีโนมไวรััสที่่�ซัับซ้้อนและตรวจพบไวรััสหลากหลายชนิดในตััวอย่่างสิ่่�งแวดล้้อมได้้พร้้อมกันด้้วย 

(Bibby and Peccia, 2013; Ahmed et al., 2020; Polo et al., 2020)
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วิิธีีการเตรีียมตััวอย่่าง มีีขั้้�นตอนหลัักดัังนี้้�

	 1. ขั้้�นตอนการลดสารพัันธุุกรรมของโฮสต์์และสิ่่�งปนเปื้้�อน มีีดัังนี้้�

	 	 1.1.การกรอง (filtration)

	 	 	 การกรองด้้วยเมมเบรนขนาด 0.2 µm เป็็นเทคนิิคที่่�ใช้้กัันอย่่างแพร่่หลายในการกำจััดเศษเซลล์์และ

จุุลิินทรีีย์์ที่่�มีีขนาดใหญ่่กว่่าอนุุภาคไวรััส เช่่น เซลล์์โฮสต์์ที่่�ตายแล้้วหรืือสิ่่�งปนเปื้้�อนที่่�มีีขนาดใหญ่่กว่่าไวรััส อย่่างไรก็็ตาม 

ควรพิิจารณาปััจจััยต่่าง ๆ ร่่วมด้้วย เช่่น ประเภทของเมมเบรน ความเข้้มข้้นของไวรััส ขนาดของไวรััส และลัักษณะของ

สิ่่�งปนเปื้้�อน (Wright et al., 2022) 

	 	 1.2.การย่่อยด้้วยเอนไซม์์ (enzymatic digestion) 

	 	 	 การย่่อยด้้วยเอนไซม์์ นิิยมใช้้เอนไซม์์ benzonase, DNase, RNase และ protease ซึ่่�งเป็็นเทคนิิคสำคััญ

ในการลดปริมาณสารพัันธุุกรรมของโฮสต์์ที่่�ปนเปื้้�อนในกระบวนการแยกไวรััส เช่่น การผลิิตวัคซีีนหรืือยารัักษาโรคท่ี่�ใช้้

ไวรััสเป็็นพาหะ โดยเอนไซม์์จะช่่วยลดปริิมาณสารพัันธุุกรรมของเซลล์์โฮสต์์และสารพัันธุุกรรมปนเปื้้�อนในตััวอย่่างได้้

อย่่างมีีประสิิทธิิภาพ ตั ัวอย่่างการศึึกษาและวิิจััยด้้วยเทคนิิคนี้้�ได้้สรุุปตามตารางท่ี่� 9 (Konz et al., 2005; Hansson  

et al., 2008; Victoria et al., 2009; Zhu et al., 2013; Fomsgaard et al., 2022) มีีดัังนี้้� 

	 	 1.3.การใช้้โพรบจำเพาะ (virus-specific probes หรืือ hybrid capture)

	 	 	 เทคนิิคนี้้�ใช้้โพรบที่่�จำเพาะต่่อลำดัับสายนิิวคลีีโอไทด์ของไวรััสเพื่่�อจัับและเพิ่่�มปริมาณสารพัันธุุกรรมของ

ไวรััสก่่อนการวิิเคราะห์์หาลำดัับนิิวคลีีโอไทด์์ เช่่น probe-based hybridization capture เพื่่�อเพิ่่�มความไวในการตรวจ

จัับไวรััสที่่�มีีปริิมาณน้้อยในตััวอย่่าง ซึ่่�งได้้กล่่าวรายละเอีียดแล้้วในบทที่่� 5 

ตารางที่่� 9 ชนิิดของเอนไซม์์ที่่�ใช้้การย่่อยด้้วยเอนไซม์์ (enzymatic digestion) สำหรัับเตรีียมตััวอย่่าง 

เอนไซม์์ หลัักการ ผลลััพธ์์ การประยุุกต์์ใช้้
DNase (benzonase) ลด DNA ของเซลล์์โฮสต์์ในกระบวนการผลิิต 

ไวรััสออนโคไลติิก
ลด DNA ของโฮสต์์ >97% ใช้้ร่่วมกัับ filtration และ 

chromatography

DNase ลด DNA ที่่�ไม่่ได้้ห่่อหุ้้�มในแคปซิิดไวรััส ลด DNA ที่่�ไม่่ได้้ห่่อหุ้้�มได้้อย่่างมีี
ประสิิทธิิภาพ

ใช้้สำหรัับแยกไวรััสบริิสุุทธิ์์�

RNase (RNase A) ลด RNA ของโฮสต์์ในตััวอย่่างไวรััส RNA 
ก่่อน sequencing

ลด RNA ของโฮสต์์ >90% ใช้้ร่่วมกัับ DNase และ filtration

RNase (RNase H) ลด RNA ของโฮสต์์และไวรััสที่่�ไม่่ต้้องการ 
ใน NGS

เพิ่่�มความไวของการตรวจจัับไวรััส ใช้้ใน metagenomic sequencing

Protease (Proteinase K) ลดโปรตีีนของเซลล์์โฮสต์์ที่่�ปนเปื้้�อน ลดโปรตีีนของโฮสต์์ >99% ใช้้ร่่วมกัับ DNase/benzonase  
และ filtration

	 2.	ขั้้ �นตอนการสกััดและทำให้้สารพัันธุุกรรมของไวรััสมีีความบริิสุุทธิ์์� 

	 	 การสกััดและทำให้้สารพัันธุุกรรมของไวรััสบริิสุุทธิ์์�เป็็นขั้้�นตอนสำคััญในงานวิิจััยทางด้้านไวรััสวิิทยาและ 

การตรวจวิินิิจฉััยโรคติิดเชื้้�อไวรััสด้้วยเทคนิิคทางอณููชีีววิิทยา เทคนิิคที่่�ใช้้มีีทั้้�งแบบดั้้�งเดิิมและเทคโนโลยีีสมััยใหม่่ 

(Chomczynski and Sacchi, 1987; Sambrook andRussell, 2001; Bergallo et al., 2006; Wozniak et al., 2020; 

NEB, 2025; Qiagen, 2025; Vutukuru et al., 2025) ตามตารางที่่� 10 ดัังนี้้�
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ตารางที่่� 10 รููปแบบของวิิธีีการสกััดและทำให้้สารพัันธุุกรรมของไวรััสมีีความบริิสุุทธิ์์�

วิธีการสกัด หลักการ ตัวอย่าง kit / protocol ข้อดี ข้อเสีย

ดั้งเดิม (chemical 
extraction, trizol / 
phenol-chloroform)

ใช้สารเคมี เช่น guanidinium 
thiocyanate, phenol, 
chloroform แยก RNA/DNA 
ออกจากโปรตีนและไขมัน

trizol (RNA),  
phenol-chloroform 
(DNA)

- ราคาถูก - ใช้เวลานาน
- สามารถปรับ protocol  
ได้ตามตัวอย่าง

- ต้องใช้สารเคมีอันตราย

- ให้ผลลัพธ์บริสุทธิ์สูง - ไม่เหมาะสำ�หรับ high-throughput

spin column  
(silica-based)

RNA/DNA จับบน 
เมทริกซ์ซิลิกาในคอลัมน์  
จากนั้นล้างและ elute

Qiagen QIAamp 
Viral RNA Mini Kit, 
NucleoSpin® DNA Virus

- รวดเร็วและสะดวก - ราคาค่อนข้างสูง

- ลดการปนเปื้อน - ต้องใช้วัสดุ kit ต่อเนื่อง

- เหมาะกับตัวอย่าง low volume

- ให้ RNA/DNA บริสุทธิ์สูง

magnetic  
bead-based

RNA/DNA จับกับอนุภาค 
แม่เหล็กเคลือบซิลิกา สามารถ
ล้างและ elute ด้วยแม่เหล็ก

Thermo MagMAX Viral/
Pathogen, Monarch 
Viral DNA/RNA Kit

- เหมาะกับ high-throughput - ราคาสูง

- ลดความเสี่ยงปนเปื้อน - ต้องมีอุปกรณ์แม่เหล็ก/automation

- ให้ RNA/DNA คุณภาพสูง

	 3.	 ขั้้�นตอนการตรวจวััดคุุณภาพและความเข้้มข้้นของสารพัันธุุกรรมไวรััสที่่�บริิสุุทธิ์์� (Wilfinger et al., 1997; 

Schroeder et al., 2006; Gallagher, 2011)

	 	 1.	 การวััดความเข้้มข้้น (quantification)  ได้้แก่่

	 	 	 1.1 nanodrop / spectrophotometry 

	 	 	 	 	 หลัักการ: วััดการดููดกลืืนแสงที่่�ความยาวคลื่่�น 260 nm (A260)

	 	 	 	 	 ข้้อดีี: รวดเร็็ว, ใช้้ตััวอย่่างเพีียงเล็็กน้้อย

	 	 	 	 	 ข้้อจำกััด: ไม่่สามารถแยกสิ่่�งเจืือปน (เช่่น โปรตีีน, phenol) ได้้อย่่างชััดเจน 

	 	 	 1.2 fluorometric assays (Qubit, PicoGreen, RiboGreen)

	 	 	 	 	 หลัักการ: ใช้้สีีฟลููออเรสเซนต์์ที่่�จัับกัับ nucleic acid

	 	 	 	 	 ข้้อดีี: ความไวสููง, ตรวจความเข้้มข้้นตััวอย่่างน้้อยได้้

	 	 	 	 	 ข้้อจำกััด: ต้้องใช้้ reagent และสารมาตรฐานเทีียบเคีียง

	 	 	 	 	 เหมาะสำหรัับ: ตััวอย่่าง RNA/DNA ที่่�มีีปริิมาณต่่ำหรืือปนเปื้้�อน 

	 	 2. 	การตรวจคุุณภาพ (quality / purity assessment)

	 	 	 2.1 A260/A280 ratio (spectrophotometry)

	 	 	 	 	 หลัักการ: ตรวจความบริิสุุทธิ์์�ของ RNA/DNA โดยเปรีียบเทีียบการดููดกลืืนแสงที่่� 260 nm และ 280 

nm เกณฑ์์มาตรฐาน: RNA: 1.8–2.1 และ DNA: 1.8–2.0 ความหมาย: ค่่า ratio ต่่ำกว่่า 1.8 บ่่งชี้้�โปรตีีนปนเปื้้�อน 

	 	 	 2.2 electrophoresis (agarose gel / bioanalyzer) 

	 	 	 	 	 หลัักการ: แยก nucleic acid ตามขนาดโมเลกุุลและดููความสมบููรณ์์

	 	 	 	 	 ข้้อดีี: ตรวจ degradation ของ RNA/DNA, ตรวจ contamination
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การป้้องกััน contamination และการควบคุุมคุุณภาพในระหว่่างการเตรีียมตััวอย่่าง

	 การป้้องกัันการปนเปื้้�อน (contamination) และการควบคุุมคุุณภาพ (quality control, QC) เป็็นขั้้�นตอนสำคััญ

ในกระบวนการสกััดและตรวจวััดสารพัันธุุกรรมของไวรััส เนื่่�องจากตััวอย่่าง RNA และ DNA มีีความไวต่่อการสลาย 

(degradation) และสามารถปนเปื้้�อนข้า้มตัวัอย่า่งหรืือจากสิ่่�งแวดล้้อมได้้ง่่าย การควบคุุม contamination จึึงต้้องอาศััย

การปฏิบิัตัิใิน ห้อ้งปฏิบิัตัิกิารมาตรฐานชีีวนิริภัยั (BSL-2 หรืือ BSL-3 ตามชนิดิไวรัสั) การใช้อุ้ปุกรณ์แ์ยกสำหรับั pre-PCR 

และ post-PCR การเปลี่่�ยนปิิเปตและ tip แบบ sterile พร้้อม filter tips และการทำงานภายใต้้ biosafety cabinet 

ช่่วยลดความเสี่่�ยงของ cross-contamination (Kwok and Higuchi, 1989) นอกจากนี้้�การควบคุุมคุุณภาพของขั้้�นตอน

การสกััดและการวััดความเข้้มข้้นของสารพัันธุุกรรมควรรวมถึึงการใช้้ positive control และ negative control สำหรัับ

ทุุก batch ของการสกััด เพื่่�อยืืนยัันความถููกต้้องและความเชื่่�อถืือได้้ของผลทดสอบ การตรวจสอบ RNA/DNA integrity 

และ purity อย่่างสม่่ำเสมอ เช่่น การวััดค่่า A260/A280 และการประเมิิน RIN (RNA integrity number) สำหรัับ RNA 

ช่่วยให้้มั่่�นใจว่่าสารพัันธุุกรรมที่่�ได้้มีีคุุณภาพเพีียงพอ (Wilfinger et al., 1997; Schroeder et al., 2006)

ตารางที่่� 11 รููปแบบของวิิธีีการตรวจวััดคุุณภาพและความเข้้มข้้นของสารพัันธุุกรรมไวรััสที่่�บริิสุุทธิ์์� (Wilfinger et al., 1997; Schroeder 

et al., 2006; Gallagher 2011 )

วิิธีีการ หลัักการ ตััวอย่่างชุุดตรวจ / อุุปกรณ์์ ข้้อดีี ข้้อเสีีย

spectrophotometry 
(nanodrop)

วััดการดููดกลืืนแสงที่่�  
260 nm (A260) เพื่่�อหา 
ความเข้้มข้้นของ RNA/
DNA และตรวจ purity ด้้วย
อััตราส่่วน A260/A280

nanodrop 
spectrophotometer

- รวดเร็็วและง่่าย - ไม่่สามารถแยกสิ่่�งเจืือปน เช่่น โปรตีีน
หรืือ phenol ได้้

- ใช้้ตััวอย่่างเพีียงเล็็กน้้อย - ความไวต่่ำสำหรัับตััวอย่่างเข้้มข้้นต่่ำ

- ประเมิินความบริิสุุทธิ์์�ได้้

fluorometric assays 
(Qubit, PicoGreen, 
RiboGreen)

ใช้้สีีฟลููออเรสเซนต์์ที่่�จัับกัับ 
RNA/DNA; ความเข้้มของ 
fluorescence เป็็นสััดส่่วน
กัับความเข้้มข้้น

Qubit RNA/DNA Assay Kit, 
PicoGreen, RiboGreen

- ความไวสููง - ต้้องใช้้ reagent และสารมาตรฐาน 
(standard)

- แม่่นยำสำหรัับตััวอย่่างที่่�มีีกรด
นิิวคลีีอิิกความเข้้มข้้นต่่ำ

- ใช้้เวลามากกว่่า spectrophotometry 
เล็็กน้้อย

- มีีค่่า bias จากสิ่่�งเจืือปนต่่ำ

agarose gel 
electrophoresis

แยก nucleic acids ตาม
ขนาดโมเลกุุล; ตรวจ 
degradation และ 
contamination

agarose gel + ethidium 
bromide หรืือ SYBR safe

- ตรวจสอบความสมบููรณ์์ของ 
RNA/DNA โดยตรง

- เป็็น qualitative หรืือ  
semi-quantitative

- ตรวจพบการ  
degradation หรืือสิ่่�งเจืือปน

- ต้้องเตรีียมเจลและใช้้เครื่่�อง imaging

automated 
electrophoresis 
(Bioanalyzer,  
TapeStation)

microfluidics-based 
electrophoresis;  
ให้้ค่่า RNA integrity 
number (RIN) สำหรัับ RNA

Agilent Bioanalyzer, 
TapeStation

- มีีความ reproducibility สููง - อุุปกรณ์์และ consumables มีีราคาแพง

- ประเมิิน integrity  
ในเชิิงปริิมาณได้้

- throughput จำกััดต่่อรอบ

- ใช้้ปริิมาณตััวอย่่างน้้อย
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